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Abstract

As modern cryptography continues to evolve, we are also dealing with increasingly pow-
erful attacks. One example of this is the algorithm substitution attack, in which a person’s
secret information can be revealed to third parties via regular network traffic after the im-
plementations of the algorithms involved have been subverted. Cryptographic reverse
firewalls have been introduced as a countermeasure to this attack. These pursue the pur-
pose of cleansing outgoing messages of potentially embedded secrets. This firewall is
considered part of the public and insecure channel, protecting a person’s secrets without
requiring them to trust it. The reverse firewall is deployed within a person’s network
and cleans up outgoing messages before they become visible to potential observers on the
Internet.

The goal of this work is to answer the question of whether the concept of a reverse firewall
is practical in terms of the additional time required to use it in everyday life. For this
purpose, we implement the Diffie-Hellman key exchange and the El-Gamal encryption
and measure the required runtime and the resulting additional time overhead on several
devices when reverse firewalls are added to the protocols, starting with a CPU comparable
to devices in the IoT category, continuing with a laptop and a PC, and ending with servers.
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Zusammenfassung

Mit der fortschreitenden Entwicklung der modernen Kryptographie haben wir es auch
mit immer stiarkeren Angriffen zu tun. Ein Beispiel hierfiir ist die algorithm substitu-
tion attack, bei der die geheimen Informationen einer Person tiber den reguldren Net-
zverkehr an Dritte preisgegeben werden konnen, nachdem die Implementierungen der
beteiligten Algorithmen unterwandert wurden. Als Gegenmafsnahme zu diesem Angriff
wurden kryptografische reverse firewalls eingefiihrt. Diese verfolgen den Zweck, ausge-
hende Nachrichten von potenziell eingebetteten Geheimnissen zu bereinigen. Diese Fire-
wall wird dabei als Teil des 6ffentlichen und unsicheren Kanals betrachtet und schiitzt die
Geheimnisse einer Person, ohne dass diese ihr vertrauen muss. Die reverse firewall wird
innerhalb des Netzwerks einer Person eingesetzt und bereinigt ausgehende Nachrichten,
bevor diese fiir potenzielle Beobachter im Internet sichtbar werden.

Ziel dieser Arbeit ist es die Frage zu beantworten, ob das Konzept einer reverse firewall im
Hinblick auf den entstehenden zeitlichen Mehraufwand fiir die Nutzung im Alltag prak-
tikabel ist. Zu diesem Zweck implementieren wir den Diffie-Hellman-Schliisselaustausch
und die El-Gamal Verschliisselung und messen auf mehreren Gerédten die erforderliche
Laufzeit und den entstehenden zeitlichen Mehraufwand bei Ergdanzung der Protokolle um
reverse firewalls, angefangen bei einer CPU vergleichbar mit Gerédten der IoT-Kategorie,
iiber einen Laptop und einen PC bis hin zu Servern.
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1 Introduction

The Internet enabled communication between two participants, overcoming limiting fac-
tors such as distance and time, as a large amount of information could be transmitted in
seconds. Although- and perhaps because - the concept of the Internet was revolutionary,
no further thought was given to how to sufficiently secure this new way of communicat-
ing.

This is surprising. As far back as ancient Rome, the concept of basic cryptography (par-
ticularly the Caesar cipher) was considered when transmitting sensitive information over
insecure channels. Throughout history, a constant emergence and evolution of cryptog-
raphy can be observed. Following this tradition, early flaws related to the security of the
Internet were fixed using cryptography.

Over the next several decades, these cryptographic primitives and protocols evolved to
the point where they were considered demonstrably secure. Encryption schemes such as
AES and RSA, random number generators, hash functions such as SHA-256, and protocols
such as TLS and Wireguard are well-known schemes that emerged from this development.

In June 2013, the trustworthiness of established algorithms had to be reconsidered. The
revelations [BBG13) [Grel4, Sch07] of former CIA employee Edward Snowden revealed
the possibility of subverting the implementations of these secure algorithms in such a way
that a most likely state attacker (i.e., intelligence agencies such as the NSA) could extract
secret information from the target’s computer via a steganographic channel. Following
this example, Snowden also revealed that the NSA introduced a bias into the standard-
ization of the DUAL_EC_DRBG pseudo-random number generator that allows the attacker
to predict the following random numbers after observing the generation of a single one.
This in turn leads to a loss of trust in these standardized algorithms.

The above incidents, as well as subsequent work on ASA, lead us to question whether we
can trust the implementations of these secure algorithms on our computers. One coun-
termeasure, preventing the exfiltration of our secret information and proposed in 2014, is
the cryptographic reverse firewall. As part of our network, it sanitizes outgoing messages
from potential embedded information. In this thesis, we implement a variety of reverse
firewalls to test them for practicality on various systems, starting with slow devices rep-
resenting IoT and smartphones, moving to laptops and PCs, and ending with servers.



1 Introduction

1.1 Contribution

The contribution of this work includes the following points:

¢ We implement reverse firewalls with the goal of achieving exfiltration resistance for
a variaty of cryptographic protocols in Sage [DS]"20] and a chosen example in C++

for comparison.

* We test our implementations for practicability in the context of runtime for a variety

of security parameters and CPUs

* We discuss our results and give an outlook on possible future developments

1.2 Structure

This work is structured as follows:

In[chapter 2] we discuss related work. Following this, we lay the foundation for this thesis
by introducing the background of the corresponding fundamentals in {chapter 3| Inchap-|
[ter 4 we take a closer look at the implementations of our reverse firewalls and present the

benchmark results in [chapter 5 We then discuss these results in[chapter 6] The conclusion
of this thesis is presented in|chapter 7 followed by an outlook on possible future work.




2 Related Work

This thesis is based on a number of works, especially the following:

When talking about algorithm substiution attacks (ASA) Young and Yung have to be men-
tioned as the first authors wworking on this topic and establishing the idea and the term
of kleptography [YY96,[YY97]. Here Young and Yung show an attack called SETUP, which
targets black-box cryptosystems and resists reverse engineering, resulting in the leakage
of secret key information.

This idea was further analyzed and developed by Bellare et al.[BPR14, BJK15] to the con-
cept of the algorithm substitution attack (ASA). With the more and more realistic threat of
mass surveillance in mind, the authors described this attack as the substitution of a sym-
metric encryption algorithm with a maliciously subverted one. The goal of this subverted
algorithm would be to exfiltrate secret key information enabling a third party to break
confidentiality of communictation in which the original party takes a part in.

In 2017 Berndt and Liskiewicz have generalized the algorithm substitution attack from
the symmetric setting to every randomized algorithm with high enough min-entropy
and established the term of the universal algorithm substitution attack [BL17], which
was then later utilized by Berndt et al. [BWP™20] to target the commonly used protocols
TLS [Res18], Wireguard [Donl7] and Signal [Sig].

The countermeasures considered in this thesis are watchdogs, as presented by Russel et
al. [RTYZ16] and cryptographic reverse firewalls as established by Mironov and David-
owitz [MS15].

The idea of the watchdog is to detect ongoing exfiltration of secrets or, more generally,
unusual behavior of the algorithms in place. This concept was then further developed by
Bemmann, Chen and Jager [BCJ21] to the approach of splitting algorithms in less complex
parts and then have their outputs recombined with the use of a trusted amalgamation.
For the complete algorithm to work as intended a watchdog in place now only has to
verify the correct behaviour of the trusted amalgamation. For less complex tasks like the
generation of a random number a watchdog with constant runtime was shown.

The cryptographic reverse firewall on the other hand has the purpose of preventing the
exfiltration of secrets for a party P. For this purpose the reverse firewall sits in party
P's network and sanitizes outgoing messages before they are sent to the other party. In
this process the reverse firewall is seen as a part of the public and untrusted channel and
as such P does not need to trust the reverse firewall. The sanitization is done by using
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rerandomization and key-malleability. With the help of these tools Mironov and David-
owitz proposed concepts for cryptographic reverse firewalls for a variety of protocols, like
Diffie-Hellman key exchange, El-Gamal and more.



3 Background

3.1 Cryptographic Protocols

In this work we adapt the notation as given by Berndt et al. [BWP20], where we con-
sider two stateful randomized algorithms A, B as our parties, participating in the run of a
protocol I14 p. Both participants start with their own private input Xp as can be seen in
Figure 5.1

Between the parties P € {A, B} a set of messages m1,ma, ..., m, is exchanged, while at
any moment both parties are given a history h; = my, ..., m; of all i messages exchanged
so far and their current state stp;.

The state stp; and history h; are both initialized with the empty string. With these two
and Xp as inputs, a new message m; is produced and sent, while the state is updated to a
new state stp;1.

For the sake of simplicity we assume, that both parties A, B swap the active part with
every sent message. So for every even ¢ A takes the sending part, while for every uneven
i B takes the sending part.

A(X4) B(X&)
msg4

msg;

msgs

msg,

- e

Figure 3.1: Depiction of a run of the protocol I14 g as given by Berndt et al. [BWP™20].

3.2 Algorithm Substitution Attack

In this section we define the algorithm substitution attack (ASA). For this we refer to

our definition of the previous section, in which we assume parties A, B to be stateful
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ASA. A (X a) B(Xg)
msg,
Y

o N\

ASA _Ext(ak)

Xa

Figure 3.2: Depiction of a run of the protocol with an ongoing ASA as given by Berndt et
al. [BWPT20].

randomized algorithms. But what happens, if for example algorithm A ist substituted
with a tampered algorithm ASA.A?

For this scenario we assume, that the maliciously tampered Algorithms have knowledge
over some attacker key ak. With the use of this key, the algorithm is now able to embed
parts of the private input X4 into the messages m; of the protocol.

The attacker can now, with the use of some extraction function ASA.Ezt(ak) and the
attacker key, extract and reconstruct the private input X4 from the messages m; of the
protocol and as such break confidentiality, as can be seen in[Figure 3.2|

Here the attacker has to be active only for the time in which the algorithms of a party are
being substituted. After this the attacker stays passive and only has to observe runs of
protocols in which A participates.

The embedding and exfiltration of the secret from the messages m; works in two variants,
the non-universal algorithm substitution attack and the universal algorithm substitution
attack.

3.2.1 Non-Universal Algorithm Substitution Attack

The idea used in this attack was first desribed by Bellare et al. [BPR14] under the concept
of an IV-replacement attack and was later by Berndt et al. [BWP™20] supplemented to the
more general approach of a coin-replacement attack.

The IV-replacement attack targets the IV used in symmetric encryption schemes like AES
in counter mode, with encryption and decryption functions (Enc{?%(m), Dec{TR(m))

over some message m and key k, where a randomly generated initialization vector is used.



3.2 Algorithm Substitution Attack

As an example we take some message m

m =L [oa [ T

evenly split in mq, mo, ..., m;, with each part consisting of [ bits equal to the block length
of the symmetric cipher with encryption function Ency over some key k. The encryption
Enc{TE(m) of the message m results in a ciphertext

c=[Va o]

where the IV is a randomly generated initialization vector.

In the next step we assume, that Enc was maliciously tampered by an attacker in a
way, that the IV is no longer generated randomly, but is instead derived from the secret
Xa. For this purpose we no assume, that the extraction function ASA.Ext is chosen
as AES in the electronic codebook mode, with encryption and decryption functions
(EncECB(m), DecF“B(m)) over some message m and some key k but without the use
of an initialization vector.

The malicious set of Algorithms ASA.A now encrypts the secret X 4 with use of the at-
tacker key ak and uses the resulting ciphertext as the IV for the encryption of the message

m.

EncEEB(X4) =5 (3.1)

EnckCTR(m) :’ s ‘ c1 ‘ ca ‘ ‘ Cn ‘: c (3.2)

Since a randomly generated number and a ciphertext are both indistinguishable from hon-
est randomness, they also cannot be distinguished from each other, which is why the at-
tack here cannot be detected just by looking at the IV without knowledge of the attacker
key ak.

Additionally to only IVs this attack is also applicable to nonces in messages of various
protocols and publically transfered random coins in general.

3.2.2 Universal Algorithm Substitution Attack

The universal ASA targets all protocols that use the output of a randomized algorithm
in their messages. In order to embed secret information bits in this output the attacker
utilizes what Bellare et al. referred to as rejection sampling [BJK15]. This idea was then later
shown to be applicable to all randomized algorithms by Berndt and Liskiewicz [BL17].
The idea behind rejection sampling is the following, as given by Berndt et al.[BWP™20]:
As soon as a randomized algorithm R uses freshly sampled randomness to generate a
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pseudo random output, a subverted instance of this algorithm can re-sample this random-
ness until the generated output contains information about the secret to be exfiltrated. For
this exfiltration to be undetectable we again utilize our extraction function ASA.Ext,
and define it as a pseudorandom function Fy;(J), where ¢ is the output of the randomized
algorithm R(x;r) over some input = and randomness 7.

In our setting the secret to be exfiltrated s can be split into L-many blocks of length A, so
that

s=[o w2 [ 2] -

where L = ‘i/\‘

Our extraction function Fi;(d) now returns a tuple (b;, ) consisting of a bit string b; of
length A and an index i of length log(L).

The subverted instance of R(z; ) now samples randomness r until it finds some value r*,
so that R(z;r*) = 6" and F,;(0*) = (s;,4), meaning the extraction function used on the
output of the randomized algorithm utilized in the protocol, returns a tuple of a block of
secret information bits and their corresponding index in the secret to be leaked s. This
procedure can now be repeated until the complete secret s is exfiltrated to the Attacker.

3.3 Diffie-Hellman Key Exchange

An example for a two party protocol with the goal of exchanging a common secret k
between both parties A, B in a protocol I14 p is the Diffie-Hellman key exchange as pre-
sented by Whitfield Diffie and Martin E. Hellman [DH76] and adapted to our notation.
Here we consider the private inputs X 4, Xp the private keys of both parties. Before the
run of the procotol starts we assume, that both parties A, B have already publically ag-
greed on a finite cyclic group F, with a prime module p and a generator g € ;.

As the initializing party, A uses the private input X4 € F) and calculates her public pa-
rameter Puby = ¢*4 mod p. A then sends Puby to B over the insecure channel who
responds with Pubp = ¢*# mod p.

Both parties can now compute the shared secret £ as follows:

Pubgf‘ mod p =k = Pubis mod p

Definition 3.1 (Decisional Diffie Hellman Problem). Given a finite cyclic group F, with

a prime module p and a generator g € F;, a challenger C is given values A = ¢g* and
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B = ¢* witha,b € Z,, and has to decide, whether for a third value C' = ¢¢ the equation

holds.

We assume the Diffie-Hellman key exchange is secure for a finite cyclic group F;, when a
probabilistic polynomial time-attacker .4 has a success rate for the decisional Diffie Hell-
man problem bounded by % + ¢, where e is negligibly small.

Alternatively, if we want to utilize a discrete elliptic curve £ mod prime ¢ with some
generator point i € E, the key exchange protocol changes marginally:

Here we now compute the public parameters Pub,, Pubg as Puby = X 4-h, Pubp = Xp-h
and the shared secret k correspondingly:

XA-PubB:k:XB-PubA

3.4 El-Gamal Public Key Encryption Scheme

With the El-Gamal public key encryption scheme we have a two party protocol I1 4 g with
parties P € {A, B} and algorithms (Keygen, Encrypt, Decrypt), where Keygen
takes as input a security parameter 1A returning a key pair (ksec, kpup), Where ke, is a
uniformly random chosen element a € Z; of a multiplicative group with prime module p
and ky, is a tuple (g, h) = (g, g*) with g € Z; being a generator of the group.

For the encryption of a message m € Z;; with public key k., = (g, h) we use the function
Encrypt over the public key with the message m as input and returning a ciphertext

Cc= (00761) - (gr)hT : m)7

where r € Z; is chosen uniformly random.
For the decryption we use the function Decrypt over the private key kg = a with the
ciphertext ¢ = (¢, ¢1) as our input and returning the message m as

—a

m=cy -C

Formal definitions for this protocol can be found in the work of Katz and Lindell [KL14].

3.5 Commitment Scheme

We give the definition of a commitment scheme as presented by Dodis et al. [DMS16].



3 Background

A commitment scheme is a two party protocol I14 g with parties P € {A, B} and a set
of algorithms (Keygen, Commit, Open, Verify), where Keygen takes as input 1*
with security parameter A returning a public parameter p. The algorithm Commit takes as
input p, a plaintext m and freshly generated randomness r, returning a commitment comm
C. The algorithm Open takes as inputs p, a commitment C' and randomness r returning an
opening opn . Verify takes as inputs a commitment C' and opening x and outputs either
a plaintext m or an error symbol L. The commitment scheme is correct, if verify(C, z) =
m holds, whenever the conditions C' = Commit(m) and x = Open(C') are met.
Additionally we require to scheme to be perfectly hiding, meaning for any two plaintexts
m1, my the distribution of Commit (m;) is identical to the distribution of Commit (m2), and
computationally binding, meaning no probabilistic polynomial-time attacker .4 can gener-
ate a commitment C' and to openings 1, x2, such that Verify(C, z1) and Verify(C, z2)
both return different plaintexts.

3.6 Rerandomizable Public Key Encryption

We present the defintion of a rerandomizable public key encryption scheme (PKES) as
given by Dodis et al. [DMS16].

For this we define an algorithm Rerand with knowledge of the public key. The PKES is
rerandomizable, if for Rerand the decryption function Decrypt and a ciphertext c holds

Rerand (Decrypt(c) = Decrypt(c)

while the pairs (¢, Rerand(c)) and (¢, Rerand (Encrypt(0))) with the encryption func-
tion Encrypt are indistinguishable.
The El-Gamal PKES is an example for a rerandomizable PKES.

3.7 Key-Malleability

We present the definition of a key-malleable PKES as given by Dodis et al. [DMS16]
A PKES is key-malleable, if the following conditions apply:

¢ The algorithm Keygen’s output is uniformly distributed over the public key space
K.

¢ Each public key pub is associated with a unique private key sec

* We have a randomized algorithm KeyMaul with a public key pub as input, return-
ing a new public key pub’ uniformly randomly distributed over K and an algorithm

10
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CipherMaul meeting the following requirements:

If we have a key pair (sec, pub), randomness r, and a key pair (sec’, pub’) with pub’ =
KeyMaul(pub;r), then the algorithm CipherMaul, with a ciphertext cand random-
ness r as inputs, returns a ciphertext ¢ such that Decrypt . (¢) = Decrypt..(c).

The El-Gama PKES is an example for a key-malleable public key encryption scheme.

3.8 Cryptographic Reverse Firewalls

In this work we use the notation as introduced by Mironov et al. [MS15]], adapted to the
established defintion of cryptographic protocols.

In compliance with our definition of a cryptographic protocol we interprete a crypto-
graphic reverse firewall (RF) as a stateful algorithm )V, that takes it’s state and a message
as inputs, returning an updated state and a new message as outputs.

Additionally we denote a composed party R o WV as the conjunction of a party P with a
REW.

A reverse firewall has to satisfy the following conditions:

Functionality maintaining For the composition of any party P with any RF WV we de-
note the stacking of reverse firewalls as:

WloP=WoP
WkOP:WO(kaloP),fork22

For a protocol II4 p with participating parties P € {A, B} we can formalize functional-
ity requirements F, where we can define which properties must apply after a run of the
protocol. So for example in the case of a Diffie-Hellman key exchange the correspond-
ing functionality requirement would be, that both parties A, B have aggreed on the same
shared key k.

Generally speaking we want reverse firewalls to be stackable, so we say that the com-
position W o P of a reverse firewall VW and a party P maintains F for any polynomial
bounded k > 1 if the stacked composition Wk o P maintains F.

Security-preservation Crucial for the applicability of a cryptographic reverse firewall
is the security-preservation. Here we demand, that if the underlying protocol is secure,

11
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and regardless of the machines behaviour, the reverse firewall must not compromise the

protocol’s security.

Exfiltration-resistance With this property we define the reverse firewall’s actual task:
Sanitizing outgoing messages from potential embedded secrets and thus preventing the
exfiltration of secret information.

To formalize this, we consider a probabilistic polynomial-time attacker A and two proto-
cols [Ty a,p with history h; and IIy;,, AB with history hy for parties P € {A, B} and RF
W, where A are maliciously subverted algorithms of party A embedding information in
the messages of the protocol using a key ak 4 known to the attacker. After the run of both
protocols the attacker A is given a history h; and has to decide, by which protocol it was
generated.

We say the RF W is resisting exfiltration if the attacker’s probability of success is bound
by 5 + ¢, where € is negligibly small.

12
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This section will cover the implementation the given protocols in their various forms, as
proposed by Dodis et al.[DMS16]], with regard to current security standards and parame-
ters and with the goal of setting up a basis usable for benchmarking the reverse firewall’s
performance on a variety of CPUs.

For both protocols covered in this chapter, algorithms over multiplicative groups modulo
a prime p and over elliptic curves are implemented. Here for the prime p we generated
a cryptographically secure prime of 3072 bit, as security standards by the NIST [Barl6]
suggest. Cryptographically secure in this context means, that for our prime number p
holds:

p = 2-q+ 1, where g is prime.

For this we wrote a program in C++, that generates a random number n consisting of
3072 bit, with the most significant bit set to 1 and the least significant to 0. For every odd
prime candidate m > n, we use the Rabin-Miller primality test as originally introduced
by Miller [Mil76] and implemented in the boost library [Boo22].

m—1
2

Once this requirement is met, our prime module p of 3072 bits is found.

Once a candidate m is tested to be prime, the number is also checked for primality.
As this bit size corresponds to a security strength of 128 bit, the elliptic curve is chosen
accordingly, in this case we use CURVE25519 [LHT16], as this curve is intedend for key
exchanges and asymmetric cryptography.

With the goal of measureing the resulting overhead when adding a cryptographic reverse
tirewall to an already established protocoll, without the need for the code to be as perfor-
mant as possible, we chose Sage [DS]20] as our programming language, since here most
of the necessary structures and operations are already intrinsically present.

4.1 Diffie-Hellman Key Exchange

For a run of a protocol II4 g of a Diffie-Hellman key exchange for two parties P € {A, B},
in the following only referred to as DH, we instantiate both our Clients Alice and Bob with
the already established prime module p for the multiplicative group Z; as well as a gener-
ator g € Z,, as we can assume that these parameters are publically aggreed on. Each client
has access to the functions keygen, where the parameters necessary for the exchange are
generated and a function exchange, where the other partie’s public and the own private

13
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parameter are taken as inputs an the shared secret & is returned.

As shown in [Listing 4.Tpoth parties now generate their private and public parameters
a,¢” and b, ¢ respectively, while in the next step the pairs (a, g?) and (b, g%) are used to
calculate the shared key candidates ka and kb. In case these candidates do not match, an
error is returned.

This procedure is repeated 1000 times and the time needed for each run is measured in
order to get an average run time needed for the operations.

Listing 4.1: DH

elapsed_time = 0
for i in range(1000) :

start = time.process_time ()

a, ga = alice.keygen()
b, gb = bob.keygen/()
ka = alice.exchange(a, gb)

kb = bob.exchange (b, ga)

elapsed_time += time.process_time() - start
if not ka == kb:

print ("Error")

In this run of the protocol the private parameters generated by Alice and Bob are of size
256 bit, as suggested by the NIST [Bar16].

Adding the reverse firewall In the next step the reverse firewall W is added to the
protocol. As it is part of Alice’s network and not visible from the internet, is
still representative for the publically visible operations, the functioniality of the algorithms
keygen and exchange is adjusted to the composition of Alice and the reverse firewall
to A o W. The basic functionalities of keygen and exchange are inherited from the
previous implementations and referenced via the call super (). In we can
now see, that the key generation references the algorithm keygen from before, but now
before the generated parameters are returned, the reverse firewall rerandomizes the public
parameter. For this the firewall samples a secret value r € Z;‘,, where

Rerand(g®) = (¢°)" = "
With this rerandomization any embedded secrets in Alice’s public parameter g* are no

longer extractable from the new public parameter g*".

The function exchange is also slightly changed, as now, before calculating (¢°)* = g%

14
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Bob’s public parameter is rerandomized with the same randomness r as before. So now
we get (¢°)" = g as Bob’s new public parameter as seen by Alice.
Consequently Alice now exchanges Bos’s rerandomized public parameter with her pri-

vate parameter, leading to

br)a abr

ka=(g")" =g

while Bob exchanges Alice’s rerandomized public parameter with his own private param-
eter, resulting in
kb = (gar)b — gabr

and thus both parties agree on their shared secret

ka = g®" = kb.

Listing 4.2: DH_FW: Algorithms for Ao W

def keygen(self):
sec, pub = super () .keygen ()

return sec, self.reverseFirewall.rerandomize (pub)

def exchange(self, sec, pub):
pub = self.reverseFirewall.rerandomize (pub)

return super () .exchange (sec, pub)

Extend the key exchange with a commitment scheme In our described scenario Al-
ice initiates the run of DH. Here we have to take into account, that with knowledge over
Alice’s public parameter, Bob still has control over the final key k, as a subverted algo-
rithm on his machine can compromise the security of the key by rejection sampling of his
private parameter until for example the shared secret’s 20 least significant bits follow a
predefined pattern.

To prevent this from happening we supplement our protocol DH to DH_Comm by adding
a variation of the El-Gamal commitment as shown by Dodis et al. [DMS16], that deviates
from the definition in the implementation, as here the algorithm verify only checks if
the message opn was used for the commitment comm and Open opens the commit.

Bob initiates the key exchange by generating a private parameter and sends a commitment
of the coresponding public parameter to Alice. After receiving Alice’s public parameter,
a subverted alogorithm on Bob’s machine can no longer use this information for compro-
mising the security of the shared secret k, as his public parameter is already set. The same
is true for Alice, since she learns the value Bob’s public parameter only after she has de-
cided on her own public parameter and sent it to him.
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In this setting Alice has access to the algorithms keygen, exchange, verify and
open and Bob has access to the algorithms keygen, exchange and commit. In the
run of this protocol, and with a second generator h € Z;, Bob now choses a private pa-
rameter b and two random coins r, s, with b, 7, s € Z, uniformly randomly and sends a
commit comm = (g" - h%, h® - g°) to Alice. In the next step Alice choses a secret parameter
a € Zy uniformly randomly and sends her public parameter g* to Bob. Bob now has all
values necessary for the key exchange and sends the random coins used to open com-
mitment open = (r,s) back to Alice. With verify she can now check, whether the sent
random coin were actually used for the commitment, by verifing that the first part of the
commitment equals ¢" - h* and if so, open the commitment with use of the algorithm open
by calculating
B .gb b = hSS . gb = gt

Alice can now exchange Bob’s public and her own private parameter to the shared secret
k.

This procedure, as can be seen in|Listing 4.3} is again repeated a 1000 times and the average
time necessary for the operations keygen, commit, verify, openandexchangeis
measured.

Listing 4.3: DH_Comm

elapsed_time= 0
for i in range (1000):

start = time.process_time ()

b, comm, open = bob.keygen ()

a, ga = alice.keygen()

if not alice.verify(comm, open):
print ("No_valid open")

exit ()
gb = alice.open (comm, open)
ka = alice.exchange (a, gb)
kb = bob.exchange (b, ga)

elapsed_time += time.process_time() - start

if not ka == kb:

print ("Error")
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Adding the reverse firewall Since the commitment scheme, used in DH_Comm, is a ran-
domized algorithm it is again targetable by an universal algorithm substitution attack. In
the next protocol DH_Comm_FW, we add a reverse firewall IV, this time as a part of Bob’s
network and with the purpose of rerandomizing the messages comm and opn. For this
purpose the firewall W choses two random coins u, v € Z;, uniformly random and reran-
domizes these messages as follows:

Rerand,,(comm) = Rerand, ,(g"h*, h®gP) 4.1)
= (g"h" - g"h* h*g" - ") (42)

— (gr-‘ruhs—i-v’ hs—‘rvgb) (43)

Rerand,,(opn) = Rerandy (T, s) (4.4)
=(r+u,s+0v) (4.5)

Again as before, Alice can now use the sent randomness (r + u, s + v) to verify the first
part of comm by comparing the value with g"t*-h*** and then open the commitment with
use of opn by calculating

Bt b, h—(s+'u) — pstv—s—v, b b

9 9 =9 -

Here it is important to note that in this protocol Alice’s public parameter is again vulner-
able to an ASA. To address this problem, the reverse firewall would additionally need to
generate another random value «, rerandomize Alice’s parameter g to g**, and maul the

messages Comm and open from (4.3) and (4.5) as follows:

MaulCommita(g HehoTe, B30 gb) = (¢ R+, (B5+0gh)®) (4.6)
= (grotuapsatva psatva gha) 4.7)

MaulOpen,(r +u,s +v) = ((r+u)o, (s + v)«) (4.8)

= (ra + ua, sa + va) (4.9)

With these two messages Alice now retrieves Bob’s rerandomized public parameter g**,
with Bob having Alice’s rerandomized public parameter ¢g** yielding the shared secret
k= gaboc‘

Calculations over elliptic curve CURVE25519 Since cryptography over elliptic curves
is becoming more and more popular, we implement the algorithms from before over a dis-
crete elliptic curve E mod 2%5° — 19 standardized under the name CURVE2551 9[LHT16].
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E is described by the equation
y? = 2% + 4866622 + = (mod 2%°° — 19)
Here with the generation of E we also generate two publically known generator points

g, h € E and use them for every protocol.

Diffie-Hellman key exchange We refer to this protocol over the elliptic curve E as
EC_DH. The overall procedure in this implementation is the same as in |Listing 4.1} What
changes are the algorithms keygen and exchange as can be seen inListing 4.4

Listing 4.4: EC_DH: Algorithms of both clients

def keygen (self) :
randint (1,self.E.order ())

secC

pub self.gxsec

return sec, pub

def exchange(self, sec, pub):

return pubx*sec

In the algorithm keygen a client choses a secret value sec uniformly random out of an
interval [1, order(FE)], where order(E) represents the amount of group elements as points
on the curve.

The corresponding public parameter pub is then calculated as g - sec.

The secret is then aggreed on in the algorithm exchange where again a public parameter
pub and a secret parameter sec are evaluated to k = pub - sec, where k is the shared secret
between both clients Alice and Bob.

Adding the reverse firewall Just as before, to obtain a protocol EC_DH_FW, we add a
reverse firewall, that rerandomizes Alice’s public parameter before exiting her network
and Bob’s public parameter before it enters Alice’s network. The implementation of this
tirewall is similar to what is shown in

Adding the commitment scheme We again add the commitment scheme to the proto-
col EC_DH so that we get an instance of EC_DH_Comm. The code for this protocol is similar
to what we can see in To adapt the operations in the algorithms keygen,

exchange, commit, open and verify to our elliptic curve E, every exponentiation”
is substituted with a multiplication * and every multiplication from before is substituted
with an addition +.
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The same method is applied in order to add the reverse firewall rerandomizing the mes-
sages commit and open, resulting in our protocol EC_DH_Comm_FW.

Now for the rerandomization we again have our generator points g,h € E and two ran-
dom coins u,v € [1, order(E)] leading us to:

Rerand (Comm) = Rerand(g-r+h-s,h-s+g-b) (4.10)
=(g-ut+h-v+g-r+h-s,h-s+g-b+h-v) (4.11)
=(g-(r+u)+h-(s+v),h-(s+v)g-b) (4.12)

Rerand (Open) = Rerand(r,s) (4.13)
=(r+u,s+v) (4.14)

4.2 El-Gamal

The El-Gamal public key cryptosystem in a protocol I14 p with parties P € {A, B} is
implemented over the multiplicative group Z; modulo prime p and a generator g € Z.
Here Alice has access to the algorithms keygen, and decrypt, while Bob has a algorithm
encrypt.

In a run of this protocol Alice generates a key pair (sec, pub) with keygen, where sec is a
uniformly random chosen value a € Z, and pub is a tuple (g, h) with g being a generator
of the group and h = ¢

In the next step a random message m € Zj is chosen and encrypted by Bob using encrypt
with a uniformly random chosen value b € Z;,.

Encrypt takes as input a message m and returns the ciphertext using the public key pub
and b as follows:

Encryptb,pub(m) = (gb’ hb ) m) = (60761) =c

Here we get a ciphertext ¢ = (co, ¢1) that Alice then decrypts to a message candidate m’
using the algorithm decrypt. If m and m' are not equal, the program returns an error.
This procedure is again repeated 1000 times and the time needed for the execution of the
given algorithms is measured, as can be seen in

Listing 4.5: EG

elapsed_time = 0
for i in range (1000):
start = time.process_time ()

g, h = alice.keygen()

m = randint (1, p)
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cO0, cl = bob.encrypt (m, g, h)
m_dash = alice.decrypt (c0, cl)

if not m == m_dash:

print ("Fail")

elapsed_time += time.process_time() - start

Adding the firewall For this protocol both rerandomization and key-malleability can be

used to sanitize the ciphertext sent from Bob to Alice. Consequently the reverse firewall

is part of Bob’s network and they form the composed party W o B.

In each scenario the overall procedure, as depicted in|Listing 4.5, stays the same.

Rerandomization We start with using rerandomization as the reverse firewall’s tool and

get a protocol EG_Rerand:

As shown in |Listing 4.6} the reverse firewall only takes the ciphertext resulting from use
of the inherited algorithm encrypt as input and rerandomizes the message by chosing a

uniformly random value r € Z; and returning

/

¢ = (cp,¢1) = (9" - co. (9")"

cc1)
as a new ciphertext.
With Bob chosing a random secret value b € Z; and calculating c as

c= (00761) = encrypt(mag7h) = <gb’gab ' m)

leading us to the rerandomization of c as follows:

C/ — (6676/1) = Rerand(CO,Cl) — (gr . 007gar . Cl)

_ (gr.gb,gar ‘gab‘m)

— (gr+b’ gar—i-ab . m)
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4.2 El-Gamal

Alice can now decrypt this new ciphertext using her private key a and algorithm decrypt:

m = decrypt(d) = decrypt(c), c}) =5 * a1 (4.18)
— (g gartab Ly (4.19)
— gror—ab . gartab (4.20)
_ gortab-ar—ab ., (4.21)
=q¢"-m (4.22)
=m (4.23)

Listing 4.6: EG_Rerand: Algorithms for party W o B

def encrypt (self, m, g, h):
r = randint (1, self.p)
c_0, c_1 = super().encrypt(m, g, h)

return rerandomize (c_0,c_1)

def rerandomize(self, cO, cl, g, h):

return (g”®self.r)*c0O, (h"self.r)x*cl

Key-malleability Using two functions keyMaul and cipherMaul instead of rerandom-
ization leads us to the protocol EG_Maul. As with EG_Rerand the overall procedure

shown in still applies.

Again only Bob’s algorithm encrypt is supplemented with the reverse firewall’s algo-
rithms as visualized in [Listing 4.7}

Listing 4.7: EG_Maul: Algorithms for party W o B

def encrypt (self, m, g, h):
g’,_h’" = keyMaul (g, h)
c0, cl = super().encrypt(m, g’,_h")

return cipherMaul (c0, cl)

def keyMaul (self, g, h):
return g”self.alpha, h”self.beta

def CipherMaul (self, c0, cl):
return c0” (self.beta / self.alpha), cl

Here we see, that the reverse firewall applies it’s function keyMaul to Alice’s public key,
before Bob uses it to encrypt the message.
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For this the reverse firewall samples two random coins «, 8 € Z; and calculates
(¢',h') = keyMaul(g, h) = (g% 1) = (9°,9*")
After Bob now encrypts the message m with use of the key (¢’, 1) to get a ciphertext

¢ = (co,c1) = encrypt(m, g, b)) = (¢°, h° - m) (4.24)
= (9,9 - m) (4.25)

the reverse firewall applies it’s function cipherMaul to the ciphtertext c. This now gives
us a new ciphertext ¢’ as follows:

Cg/av Cl)

::(gabﬁ/a’gam3‘7n)

= (¢"?, 9" - m)

d = (ch,c}) = cipherMaul(cy,c1) = (

Now, as before, Alice can decrypt the ciphertext ¢ with her algorithm decrypt and her
private value a:

m = decrypt () = decrypt(c), ci,a) =5 * -1 (4.26)
= g—abb’ . gabﬁ -m (4.27)
= gobf=abB o (4.28)
=¢"-m (4.29)
—m (4.30)

Rerandomization and key-malleability In the last variant of El-Gamal utilizing both,
rerandomization and key malleablitiy, leads us to the procotol EG_ReMaul in which the
composed party W o B has access to the algorithms shown in[Listing 4.8|

Listing 4.8: EG_ReMaul: Algorithms for party W o B

def encrypt(self, m, g, h):

g’,_h’ = keyMaul (g, h)
c0, cl = super().encrypt(m, g, h)
c0’,_cl’ = rerandomize(cO, cl, g, h)

return cipherMaul (c0, cl)

def keyMaul (self, g, h):
return g”self.alpha, h”self.beta

def CipherMaul (self, c0, cl):
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return c0” (self.beta / self.alpha), cl

def rerandomize(self, c0, cl, g, h):

return (g”®self.r)*cO0, (h"self.r)x*cl

Here we can see, that in the first step of the encryption, Alice’s public key (g, i) is mauled
to a new key (¢', 1) with use of the random coins «a, 8 € Z, followed by the encryption
of message m to ciphertext ¢ = (co, ¢1).

This ciphertext is then rerandomized with use of randomness r € Z; to a new ciphertext
. Finally, in the last step, this ciphertext ¢’ is then again mauled with use of the algorithm
cipherMaul.

As the overall procedure shown in still apllies here, Alice can now decrypt
the mauled and rerandomized ciphertext and retrieves the message m, without further
calculations necessary.

Calculations over elliptic curve CURVE25519 As with the Diffie-Hellman key ex-
change, the protocols EG and EG_Rerand are translated to our discrete elliptic curve E
modulo 22%° — 19 standardized under the name CURVE25519, resulting in the protocols
EC_EG and EC_EG_Rerand.

For this to work, the same adaptions as with the key exchange protocol are necessary and
sufficient, meaning every exponentiation " is replaced with a multiplication * and each
multiplication * is substituted with an addition +.
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5 Benchmarks

In the following section, we look at the results of the benchmarks performed with the
code elaborated in the previous chapter. These results were calculated from the average
run times of 1000 repitions of the core algorithms in each protocol.

To match the security strength of 128 bit[Bar16], we use a prime integer p of 3072 bits for
our calculations over a multiplicative group Z, modulo p, although the private key sizes
vary in the different protocols, to get an idea of a worst case scenario regarding the resulting
overhead from utilizing a reverse firewall.

The testing systems In(Table 5.1 we see the different systems with their CPUs used for
the benchmarking. We chose these systems with the intention of quantifying the resulting
run times over slower devices like smart home and internet of things devices (IOT) or
smartphones, up the scale of CPUs used for servers. The implementations using Sage
were tested on all systems except IOT and Smartphone. To get an idea of the resulting
overhead on these devices, we implement the procotols DH and DH_FW in C++, With these
results we then evaluate the usability of reverse firewalls on these systems.

Table 5.1: List of testing systems with corresponding CPU

System Ccru

10T ARM ARM1176@1 GHz
Smartphone | ARM Cortex-A53@1.4 GHz

Laptop Intel i3 10110U@2.10 GHz

PC AMD Ryzen 5 2600@3.4 GHz

Server 1 Intel Xeon Silver 4114 CPU@2.2 GHz
Server 2 Intel Xeon Gold 6342 CPU@ 2.8 GHz

Diffie-Hellman key exchange We start with evaluating the run times for the various
implementations of the Diffie-Hellman key exchange. In [Figure 5.1 we see the visual rep-
resentationn of our results for our protocols DH, DH_FW, DH_Comm and DH_Comm_FW
as given in implemented in Sage and tested on our systems Laptop, PC, Server
1 and Server 2.

25

Go over
findings /

results




5 Benchmarks

Table 5.2: Benchmark results for various Diffie-Hellman key exchange protocols on all sys-
tems except IOT and Smartphone

System DH DH_FW | DH_Comm | DH_ Comm_FW
PC 2.8ms | 31.8ms 76.2ms 122.7ms
Laptop | 39ms | 43ms 83.8ms 134.4ms

Server1 | 5.1ms | 59.2ms | 141.6ms 227.8ms
Server2 | 39ms | 45.6ms | 109.9ms 174.6ms

PC Laptop Server 1 Server 2

m DH DH_FW DH_Comm DH_Comm_FW

Figure 5.1: Visualization of benchmark results given in|Table 5.2

Here we see the benchmarks for our implementation of DH in Sage ranging from 2.8ms on
PC to 5.1ms on Server 1, averaging at 3.93ms across all platforms. The bar right next to
it, in orange, shows us the execution time needed for DH_FW, which ranges from 31.8ms
on the PC to 59.2ms on Server 1, with an average runtime of 44.9ms across all systems.
With these results we can see, that DH_FW takes about 11.4 times longer than DH on PC,
11.6 times longer on Server 1 and about 11.4 times longer on average across all systems.
For these two protcols we use private private keys of 256 bit for the Diffie-Hellman pa-
rameters and a private key of 3072 bit for the reverse firewall.

With the bars colored in gray and yellow we can now compare the resulting overhead of
adding a reverse firewall to our protocol DH_Comm, where we use consistent private key
sizes of 3072 bit.

For DH_Comm we see benchmarks of 76.2ms on a PC up to 141.6ms for Server 1, followed
by benchmarks for DH_Comm_FW of 122.7ms on PC ranging to 227.8ms on Server 1. This
gives a resulting overhead of about 61% on PC, 60.9% on Server 1 and averaging at about
60.3%.

The discrepancy in the overheads from adding a firewall to DH and DH_Comm is reason to
implement DH and DH_FW in C++, this time with all private key sizes being set to 256 bit.
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This leads us to the benchmarks visualized in [Figure 5.2a and [Figure 5.2b} with absolute
values shown in [Table 5.3]

Here, again in blue, we see the runtime of DH ranging from 3.9ms on PC to 7.5ms on Server

1 in[Figure 5.2a} and from 96.7ms on Smartphone to 221.4ms on IOT in

The corresponding benchmarks for DH_FW in this setting, in orange, range from 8ms on

PC to 15m.1s on Server 1, and from 199.5ms on a Smartphone to 445.5ms on a IOT device.
With these benchmarks we observe a consistent overhead of about 100% throughout all
systems.

Table 5.3: Benchmark results for DH and DH_FW written in C++ on all present systems.

System DH DH_FW
PC 3.9ms 8ms
Laptop 5.4ms 11ms
Server 1 7.5ms 15.1ms
Server 2 5.9ms 12ms
10T 96.7ms | 199.5ms
Smartphone | 221.4ms | 445.5ms

=)
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6,00 200
I I 150

4,00

J I E -
PC o1

Laptop Serverl Server 2 Smartphone

mDH mDH_FW WDH mDH_FW

(a) For all Systems except IOT and Smartphone (b) For IOT and Smartphone
Figure 5.2: Visualization of benchmark results given in(Table 5.3

El-Gamal The protocols EG, EG_Rerand, EG_Maul and EG_Rerand over the multi-
plicative group Z, modulo prime p of size 3072bit and with private keys of size 3072 bit,
are tested on the devices PC, Laptop, Server 1 and Server 2 with the resulting benchmarks
visualized in [Figure 5.3]and with absolute values given in [Table 5.4]

Here we can see the benchmark results for EG ranging from 30.2ms on PC up to 56.7ms,
when executed on Server 1.

When adding a reverse firewall with the functionality of rerandomizing the ciphertext,
we get benchmark results for EG_Rerand of 53.1ms, when executed on a PC and 99.4ms
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on our Server 1. With these measured values we can now calculate the overhead of about
53% on the PC and 51% on Server 1, with an average of 51% across all systems. Here

Table 5.4: Benchmark results for EG, EG_Rerand, EG_Maul and EG_Rerand on the
given systems

System EG EG_Rerand | EG_Maul | EG_ReMaul
PC 30.2ms 53.1ms 46.3ms 69.1ms
Laptop | 33.6ms 58.3ms 50ms 75ms
Server 1 | 56.7ms 99.4ms 85.8ms 127.8ms
Server 2 | 43.6ms 76.6ms 65.7ms 98.4ms

PC Laptop Serwverl Server 2

WEG EG_Mau EG_Rerand EG_ReMau
Figure 5.3: Visualization of benchmark results given in|Table 5.4

we can see the benchmark results for EG ranging from 30.2ms on PC up to 56.7ms, when
executed on Server 1.

When adding a reverse firewall with the functionality of rerandomizing the ciphertext,
we get benchmark results for EG_Rerand of 53.1ms, when executed on a PC and 99.4ms
on our Server 1. With these measured values we can now calculate the overhead of about
53% on the PC and 51% on Server 1, with an average of 51% across all systems.

If instead mauling the public key and the ciphertext we get benchmark results for
EG_Maul starting at 53.1ms on the PC up to 99.4ms on our Server 1, leading to us to
a relative overhead of 75.7% on PC and 75.3% on Server 1 with an average of 75.08%
across all platforms.

In the last variant EG_ReMaul we utilze both, rerandomization and key mauling and
get benchmark results ranging from 69.1ms on our PC to 127.8ms on Server 1 giving us
an overhead of 128.8% on PC and of 125.3% on Server 1, averaging at 125.7% over all
systems.

Additionally here we can observe the linear dependency of the execution time over-
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head incurred, when stacking the reverse firewall’s functionalities, as the resulting from
overheads from EG_Rerand and EG_Maul roughly add up to the overhead incurring in
EG_ReMaul.

Benchmarks over elliptic curve CURVE25519 In this paragraph we look at the results
when benchmarking our protocols over our elliptic curve CURVE25519.
We start by visualizing the benchmark results of the protocols EC_DH, EC_DH_FW,

EC_DH_Comm and EC_DH_Comm_FW shown in in the graphs depicted in
ure 5.4

Table 5.5: Benchmark results for the variations of EC_DH on the given systems

System EC_DH | EC_DH_FW | EC_DH_Comm | EC_DH_Comm_FW
PC 35.5ms 52.6ms 84.2ms 137.1ms
Laptop | 29.9ms 42.7ms 72.8ms 114.2ms
Server 1 | 42.7ms 58.9ms 100.6ms 156.1ms
Server 2 | 28ms 37.9ms 65.4ms 100.4ms

o I I I I
PC Laptop Saverl Server 2

WEC_DH EC_DH_FW EC_DH_Comm EC_DH_Comm_FW

Figure 5.4: Visualization of benchmark results given in|Table 5.5

The execution of EC_DH on server 2 is the fastest with 28ms, followed by the Laptop with
29.9ms, while server 1 is the slowest with 42.7ms.

Supplementing this protocol with a reverse firewall to EC_DH_FW we can see, that the exe-
cution time needed by server 2 increases to 37.9ms, while server 1 now takes 58.9ms. This
leads to a time overhead of 35.3% on server 2 and of 37.9% on server 1. The discrepancy of
the overhead throughout the different systems is quite large in this setting, as the PC has a
time overhead incurred of 48.2% when looking at the execution time of 35.5ms needed for
EC_DH and comparing with the benchmark of 52.6ms for EC_DH_FW. Overall the in this
reverse firewall adds a time overhead of 41% in this scenario.
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Looking at the benchmark results of protocol EC_DH_Comm we can see, that the execution
on server 2 time increased to 65.4ms, followed by the laptop with 72.8ms, the PC with
84.2ms and concluded with 100.6ms on server 1. Adding the reverse firewall yielding in
EC_DH_Comm_FW increases the execution time needed additionally to 100.4ms on server
2, to 114.2ms on the laptop, to 137.1ms on the PC and to 156.1ms on server 1. This leads to
incurring time overheads of 53.5% for server up to 62.8% for the PC with an average time
overhead of 57.1% across all systems.

El-Gamal We conclude this section with the benchmarks of our protocols EC_EG and

EC_EG_Rerand. For this we show the absolute values of our results in and
visualize them as graphs in

Table 5.6: Benchmark results for EC_EG and EC_EG_Rerand on the given systems

System | EC_EG | EC_EG_Rerand
PC 35.5ms 52.6ms
Laptop | 29.9ms 42.7ms
Server 1 | 42.7ms 58.9ms
Server2 | 28ms 37.9ms

ot}
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Figure 5.5: Visualization of benchmark results given in

BMEC_ EG mEC EG_Rerand

The protocol EC_EG needs an average of 28.5ms on server 2, followed by 30.2ms on the
laptop, 35.3ms on the PC and 43.4ms on server 1.

Supplementing this protocol with the reverse firewall to EC_EG_Rerand gives us bench-
mark results of 38.1ms when executed on server 2, 42.7ms on the laptop, 50.8ms on the
PC, concluded with 58.6ms on server 1. These results lead us to an incurring time over-
head ranging from 33.6% on server 2 to 43.9% on the PC and averaging at 38.5% across all

systems.
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6 Discussion

Based on the results of our benchmarks presented in of our various protocols
elaborated in we can observe a fairly constant time overhead in the range of
about 35 to 100%. Only the implementation of DH in sage provides us with an outlier of
about 1040%, which leads us to conclude that this result can be neglected. We implement
this protocol in C++ and measure an approxiamte time overhead of 100% after adding the

reverse firewall.

The Diffie-Hellman key exchange has a comparably low computational complexity.
We neglect the generation of the private keys and only consider the asymmetric opera-
tions. Here we have four asymmetric operations within one execution, including the cal-
culation of the public parameters and the exchange of the corresponding pairs of private
and public values. When introducing the reverse firewall, we add two more asymmetric
operations for rerandomizing the public parameters, yielding an estimated computational
overhead of 50%. Our measurements for DH_FW written in C++ show a time overhead that
exceeds the calculated one by a factor of two. Possible reasons for this include high CPU
utilization, missing optimization of the procedures and more.

Another observation, we can make is that for all implementations over a multiplicative
group Z, modulo a prime p, the PC is the fastest, followed by the laptop, the server 2, and
finally the server 1. Once we use cryptographic operations over a discrete elliptic curve
E, Server 2 and the laptop, the systems that use the latest CPUs among those available,
outperform the other platforms. Here, server 2 undercuts the calculated overhead by
about 25% when adding a reverse firewall to the Diffie-Hellman key exchange. From these
observations, we conclude that our measurement results estimate an upper bound for a
realistic scenario and that we may assume more efficient implementations in optimized
environments.

Measurements of the performance of TLS on FPGAs,performed by Bellemou et al. [BGC'19]
result in a runtime of 1.7ms for an implementation resembling our protocol EC_DH in an
optimized environment. If we take our determined additional time of about 40% into
account here, the runtime would increase to about 2.38ms. This difference of 0.68ms
is negligibly small in the context of the Internet, where latencies of about 30ms are not
uncommon. This result emphasizes the practicality of reverse firewalls.
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Following these findings, we discuss the deployment location of the reverse firewall.
Since our attack scenario involves subverted algorithms on a machine, we assume that the
attacker had access to this machine at some point in time, rendering all implementations
on the system vulnerable. Consequently, and with the idea of performance in mind, we
outsource the reverse firewall to a separate physical appliance. Here, we follow the con-
cept of a hardware security module (HSM) [Fox09] or a trusted platform module (TPM).
As such, the reverse firewall might utilize hardware acceleration and ASICs for the spe-
cific cryptographic operations, further reducing our estimated time overhead. Since the
reverse firewall is supposed to act as part of Alice’s network and not be consciously no-
ticed by her, integration into a router or the deployment at a provider for web proxies is

realistic.

In this context, we now assess whether we need to consider a stateful or a stateless
implementation of the reverse firewall. Here, it all depends on the underlying protocol
and the specific functionality of the reverse firewall. Examples, where a stateless im-
plementation suffices, are protocols vulnerable to non-universal ASA, such as TLS 1.2
and Wireguard, as shown by Berndt et al. [BWP"20]. To rerandomize a nonce used as a
steganographic channel, the reverse firewall needs fresh randomness, but this is also only
needed for this one operation, after which it can be discarded. Similarly, the implemen-
tation of the reverse firewall in EG_Rerand and EC_EG_Rerand may be stateless. Here
each ciphertext is rerandomized with freshly generated randomness, which is not needed
afterward and thus discarded. In contrast, protocols whose reverse firewall generated pri-
vate keys are used for several messages of the run. In this case, the keys must be kept and

assigned to a session, so we need a stateful implementation.

Even if the reverse firewall proves to be a viable tool to prevent exfiltration of secret
information, we still face the problem here that with an ASA, state-level attackers, among
others, are eligible. Glenn Greenwald [Grel4] has pointed out that organizations like the
NSA are capable of intercepting and manipulating routers at delivery. We can therefore as-
sume that this can also happen with our reverse firewall appliance. Consequently, we also
have to think about other measures. Watchdogs, as introduced by Russel et al.[RTYZ16]
and later developed further by Bemmann et al.[BCJ21]], come into question here. These are
deployed on the system to be protected and check the executed code for correct behavior.
In the scenario of an ASA, we must assume that any system on site can be compromised,
this includes the reverse firewall. Therefore, it is essential that for sufficient protection
in security-critical areas, regular checks of the code and the deployed systems are also

carried out.
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7 Conclusions

7.1 Summary

Following the developments in modern cryptography, we are also dealing with increas-
ingly powerful attacks. An example of this is the algorithm substitution attack, in which
a person’s secret information is leaked to a third party via regular network traffic after the
algorithms involved have been subverted.

Cryptographic reverse firewalls were introduced as a countermeasure and to sanitize out-
going messages from potentially embedded secrets. This is seen as part of the public
channel and protects a person’s secrets without requiring them to trust it in any way. The
reverse firewall is deployed within a person’s own network and modifies outgoing mes-
sages before they become visible to potential observers on the Internet.

Since most of the work on this concept has been theoretical, we devote this thesis to testing
the practicality of reverse firewalls in terms of runtime behavior. We found that on average
we can expect an additional time overhead of about 35 to 100%, although these results
are an upward estimate of a realistic scenario due to missing optimizations, among other
things. For this purpose, we implement the Diffie-Hellman key exchange and the El-
Gamal encryption with the addition of various reverse firewalls and measure the required
runtime and the resulting additional time overhead of utilizing the RF on various devices,
starting with the IoT category, continuing with a laptop and PC, and ending with servers.
We discovered that, on average, an additional time overhead of about 35 to 100% can be
expected, although these results are an upward estimate for a realistic setting, due in part
to a lack of optimizations.

To implement the reverse firewall as performantly as possible, the idea of using a dedi-
cated physical appliance makes sense, where hardware acceleration and other optimiza-
tions concerning cryptographic operations can be used. However, against the background
that we can expect state-level attackers here, we must consider that the reverse firewall
may also be compromised in the event of such an attack. To counteract this, additional
checks of the implementations of the algorithms used should therefore also take place

regularly.

Future work
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