
Comparing vulnerability management
to automated penetration testing

Vergleich von Schwachstellenmanagement
und automatisierten Penetrationstests

Bachelorarbeit

im Rahmen des Studiengangs
IT-Sicherheit
der Universität zu Lübeck

vorgelegt von
Felix Zenk

ausgegeben und betreut von
Prof. Dr. Thomas Eisenbarth

Die Arbeit ist im Rahmen einer Tätigkeit bei der Firma Axians IT Security GmbH ent-
standen.
This thesis was created within an activity at the company Axians IT Security GmbH.

Lübeck, December 17, 2024





Abstract

In today’s world cyberattacks are ubiquitous and dangerous to the point of threatening
an organization’s existence. To avert the dangers of cybercrime it is essential to develop
a good cybersecurity strategy. Past work has shown that not only the completeness of
the vulnerabilities found but also their prioritization in remediation plays a decisive role.
This bachelor thesis examines the concepts of “vulnerability management” and “auto-
mated penetration testing” to establish a guideline that when considering the growth of
an organization’s network, yields which of the two concepts is more suitable for that orga-
nization’s current situation. Vulnerability management describes the process of passively
scanning networks for indications of vulnerable software running on hosts. Automated
penetration testing is an active approach, that tries to perform a real attack on the target
to prove the existence of a vulnerability. Three test networks with a growing number of
hosts and variable amounts of exploitable services were built and scanned with a selec-
tion of commercial and FOSS vulnerability scanners to obtain a broad overall picture, that
compares both concepts. The prioritization of a vulnerability is realized with the CVSSv3
score in the commercial tools, the FOSS alternatives rely on the older CVSSv2 standard.
Finding viable FOSS alternatives has proven to be the most challenging part of this work,
as fully automated open-source penetration testing tools are sparse. The scan results show
that an organization should start by using automated penetration testing and later split
their focus into server and client systems. After a while, both approaches converge in de-
tection rate for server systems, whereas vulnerability management proved dominant for
clients.

iii



Zusammenfassung

Cyberangriffe sind in der heutigen Welt allgegenwärtig und so gefährlich, dass sie die
Existenz einer Organisation bedrohen können. Um die Gefahren der Cyberkriminal-
ität abzuwenden, ist es unerlässlich, eine gute Cybersicherheitsstrategie zu entwick-
eln. Frühere Arbeiten haben gezeigt, dass nicht nur die Vollständigkeit der gefundenen
Schwachstellen, sondern auch deren Priorisierung bei der Behebung eine entscheidende
Rolle spielen. Diese Bachelorarbeit untersucht die Konzepte “Schwachstellenmanage-
ment” und “automatisierte Penetrationstests”, um eine Richtlinie zu erstellen, die unter
Berücksichtigung des Wachstums des Netzwerks einer Organisation darstellt, welches
der beiden Konzepte für die aktuelle Situation dieser Organisation besser geeignet ist.
Schwachstellenmanagement beschreibt den Prozess des passiven Scannens von Netzw-
erken auf Hinweise über anfällige Software, die auf Hosts ausgeführt wird. Automa-
tisierte Penetrationstests sind ein aktiver Ansatz, in dem versucht wird, einen echten An-
griff auf das Ziel durchzuführen, um die Existenz einer Schwachstelle zu beweisen. Drei
Testnetzwerke mit einer wachsenden Anzahl von Hosts und unterschiedlichen Mengen
an ausnutzbaren Diensten wurden aufgesetzt und mit einer Auswahl an kommerziellen
und FOSS-Schwachstellenscannern gescannt, um ein breites Gesamtbild zu erhalten,
das beide Konzepte vergleicht. Die Priorisierung einer Schwachstelle wird in den kom-
merziellen Tools mit dem CVSSv3-Score realisiert, die FOSS-Alternativen basieren auf
dem älteren CVSSv2-Standard. Die Suche nach brauchbaren FOSS-Alternativen erwies
sich als der schwierigste Teil dieser Arbeit, da es nur wenige vollautomatische Open-
Source-Penetrationstest-Tools gibt. Die Scan-Ergebnisse zeigen, dass eine Organisation
mit automatisierten Penetrationstests beginnen und seinen Fokus später auf Server- und
Client-Systeme aufteilen sollte. Nach einiger Zeit nähern sich beide Ansätze hinsichtlich
der Erkennungsrate für Server-Systeme an, während sich das Schwachstellenmanage-
ment für Clients als dominant erwies.

iv



Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Be-
nutzung der angegebenen Hilfsmittel angefertigt zu haben.

Lübeck, December 17, 2024

v





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Scope of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Axians IT Security GmbH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related work 9
2.1 Similar work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Why this is relevant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Methods and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Methodology 11
3.1 Organization models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Test network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Scanning the networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Results 25
4.1 Guideline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Evaluation of hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusions 31
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Discussion and open problems . . . . . . . . . . . . . . . . . . . . . . . . . . 32

References 35

vii



1 Introduction

Today, many different organizations are increasingly threatened by cyberattacks [LTT+23].
Even though cybercrime in Germany has been declining over the last years foreign cyber-
crime is booming. The number of recorded cyber crimes has doubled in just four years
since the year 2020 [BKA24]. Massive amounts of damage can be caused to an organiza-
tion by just a single cyberattack.

Globally, more than one in four recorded crimes are cyber crimes [BKA24]. The most
prevalent type of cybercrime nowadays is ransomware [BSI23, LTT+23]. More and more
victims of ransomware attacks refuse to pay the ransom, which forces cybercriminals to
increase the amount of the ransom per attack. The average ransom demand for a sin-
gle attack was $621,858 in 2023 and total extorted ransoms reached over $1B for the first
time [BKA24]. A single attack is however not the only concern of victims, as it is now
common practice amongst ransomware groups to perform a triple extortion technique by
first encrypting files and demanding a ransom from the victim organization, then threat-
ening to publicize transferred data and, as a third step, blackmailing the customers of that
victim and also demanding a ransom from them [BKA24]. In 2022 the amount of dam-
age inflicted on organizations because of cybercrime has quadrupled over the last 5 years
before that and is now quantified at $202.7B in total damages per year across german or-
ganizations [BKA23]. All the above contributes to small and medium-sized organizations
(SMOs) being existentially threatened by just a single cyberattack [BKA24, BSI23]. And
the bad news is, that ransomware as a service (RaaS) groups get increasingly professional
in their scheming. Cybercrime groups are getting structured similar to legal companies
with different departments and a clear hierarchy. The result is, that RaaS is becoming
vastly available and cheaper, so more organizations become targets of criminals. 59% of
all ransomware victims in Germany are medium-sized organizations and a further 9%
resemble small organizations and large corporations [BSI23]. It is apparent that organi-
zations starting their business or expanding are especially at risk of cybercrime, therefore
an efficient and working cybersecurity strategy is important and could save organizations
from bankruptcy. Most SMOs do not recognize this danger, as 54% of them do not get
outside help from a managed security service provider (MSSP), but instead follow the di-
rective “We’ll manage it ourselves somehow.” [BSI23] leading to these alarming numbers.
In 2022 a total of $7.8B was invested by german organizations towards cybersecurity. In
comparison to the $202.7B in losses due to the lack of cybersecurity measures, it is highly

1



1 Introduction

lucrative for organizations to invest in their cybersecurity.

In order to protect themselves against these attacks, it is important for organizations to
recognize and rectify vulnerabilities in their own systems and fix them. Vulnerability man-
agement and penetration testing are two widely used concepts that aim to uncover vulner-
abilities in a system, but differ in their approach [DT15]. Both concepts can be carried
out as an internal or external approach. Internal scans are performed from within the or-
ganization network and can thus provide deeper insights into the system. In addition,
credentials can be used to access systems and thus also find vulnerabilities that are only
visible from the perspective of a logged-in user. An external scan is carried out from out-
side the organization network and can only find externally visible vulnerabilities (attack
surface) [MK15].

1.1 Background

Penetration testing has the potential to penetrate deeper into a system and uncover more
vulnerabilities, because vulnerabilities are actively exploited and therefore can be verified
to actually work. These vulnerabilities can then be further used to carry out an attack
chain consisting of multiple exploits to eventually compromise a system.

Vulnerability management, on the other hand, can cover a larger area as it does not only
focus on exploitable vulnerabilities, but also on vulnerabilities that are not relevant for an
attack at this time, but are nevertheless present and can become relevant in the future. It
does not actively exploit vulnerabilities, but instead takes a passive approach. Vulnerabil-
ity management works by scanning the system for information used for service detection
and revealing version information of these services. The collected information is then
cross-referenced with vulnerability databases to identify vulnerable versions of software
running on that system. This is the reason why vulnerability management can ever only
find the uppermost layer of vulnerabilities in a system, if no credentials were provided for
a service enumeration on the system itself. In addition, vulnerability management is gen-
erally easier to use and, for the same systems with credentials provided, delivers similarly
good results more quickly [Sha20].

Penetration testing comes in two different forms: Automated penetration testing and
manual penetration testing. Automated penetration testing refers to the process in which
a tool automatically attempts to penetrate a system. Various attack methods are tried
out in the process, to find vulnerabilities. These vulnerabilities can be combined to form
an attack chain and thus enable the deepest possible penetration into the system. Auto-
mated penetration testing is a relatively new concept, the traditional approach is a man-
ual penetration test. Manual penetration testing differs from automated penetration test-

2



1.1 Background

ing in that a human carries out the attacks manually and not an automated tool. Com-
parisons between automated penetration testing and manual penetration testing have
shown that automated penetration testing is generally faster and more efficient and at
the same time does not find significantly fewer vulnerabilities than a manual test would
find [ADA18, Sha20].

Only some scenarios are still too complex for automated tests and require human interven-
tion, for example custom captchas or multifactor authentication [Sha20]. With the wide
spread of AI technology and knowledge it is possible however to design specialized mod-
els that are able to defeat captchas [DH23]. Furthermore, automated penetration testing
is generally more economical than a manual test, as it is more cost-effective and requires
less human working time and can be carried out independent of the time of day [ADA18].
Human error is also avoided in the process as the tests run automated without human in-
tervention [ADA18]. One advantage of manual penetration testing, on the other hand, is
that it is more flexible and can be adapted to specific requirements and the context of a net-
work. It is important to avoid false positives which automated penetration testing ensures
by testing whether exploits actually work. This keeps the false positive rate of automated
penetration testing lower than the one of vulnerability management [ADA18, Sha20]. A
particular advantage of manual tests is that they can discover zero-day exploits that are
not yet listed in the exploit databases or strategies of automated tools [Sha20].

In summary, organizations that want cost-efficient and effective protection against cyber-
attacks, should consider the approach of automated penetration testing as opposed to
manual penetration testing. When looking at the completeness of the results of both ap-
proaches, it can be seen that both approaches are able to find most vulnerabilities in a
system, only zero-day exploits and very specific attacks require manual testing [ADA18].
This may change over time, as automated penetration testing was effectively developed in
the past 10 years and likely will see further improvements in the future. In general, it can
be said that automated penetration testing and vulnerability management are likely com-
plementary approaches which, in combination, provide a complete and comprehensive
picture of the vulnerabilities in a system [DT15, Sha20].

Vulnerability management, on the other hand, refers to the process in which a system
is passively examined for vulnerabilities. A system’s services are probed and their ver-
sion identified and then compared to a database of vulnerable versions of software. In
particular, port scanners (most of the time nmap) are used, which establish connections
on a list of defined ports of a system in order to test whether they are open and offer a
service. Possible services running on the host are inferred by the port number, if they
run on standardized ports such as an HTTPS web server on TCP/443, or probed to grab
banners or a handshake sequence that can identify the service. This initial test is fol-

3



1 Introduction

lowed by additional tests that determine more details about the system such as operating
system or service version. The findings of this scanning phase is then checked against
vulnerability databases, such as the National Vulnerability Database (NVD) [BRW13], the
GitHub Advisory Database (GHAD) [GHA24] or the Common Vulnerabilities and Ex-
posures (CVE) [CVE] list. Matches are reported as existing vulnerabilities, without any
attempt to actively exploit these vulnerabilities.

This is known as a VAPT (vulnerability assessment and penetration testing) approach.
[SM15] confirmed in their case study, where they found four additional vulnerabilities in a
bank’s web applications, that manual penetration testing is a good supplement to vulner-
ability management. [KKSG19] presents a similar evaluation of the VAPT process, where
they come to the conclusion that implementing a working VAPT process is crucial for or-
ganizations today and in the future. The question remains whether automated penetration
testing can compete with manual penetration in this regard and when not looking at just
web application vulnerabilities, but the network as a whole. Past work has shown, that
the comparatively high false-positive rate of vulnerability management can be reduced
by automated penetration testing, as this only finds vulnerabilities that can be actively
exploited. Automated penetration testing can thus provide an overview of the acute vul-
nerabilities in a system, while vulnerability management can provide an overview of all
vulnerabilities in a system, even if they cannot be actively exploited and are not relevant
at the time, but may become relevant in the future. Such vulnerabilities, that are not found
by automated penetration testing because they do not result in a promising attack vector
can still be found and remedied. This creates a comprehensive picture of the vulnerabili-
ties in a system, which makes it possible to prioritize the vulnerabilities according to their
severity and thus fix the most critical vulnerabilities first [Sha20]. This is particularly im-
portant as past work has shown that it is not only the completeness of the vulnerabilities
that is important, but also the prioritization of said vulnerability plays a relevant role for
the remediation [WOS21]. Automated penetration testing therefore has the promise to do
the same as manual penetration testing and aid vulnerability management in finding a
complete yet prioritized picture of an organizations vulnerabilities.

Various scoring systems, such as the CVSS [CVS15] or manufacturer-specific scoring sys-
tems, can help to assess vulnerabilities according to their severity [SSN23, WOS21]. The
CVSS score is a widely used scoring system that rates vulnerabilities according to their
severity. It consists of several metrics, such as the severity of the impact, the probability
of a successful attack and the availability of exploits [WOS21]. The score is available in
different versions, with the latest version being the recently published CVSSv4 score. Ten-
able, a leading provider of vulnerability management tools, builds on the CVSSv3 score
by taking other metrics, such as exploit availability or the current occurrence of attacks

4



1.2 Scope of this work

into account to build their own Vulnerability Priority Rating (VPR) score in an attempt to
address the issue of unclear remediation prioritization of the CVSSv3. The new CVSSv4
score also includes the system’s environment, however, as it has only been in existence for
about a year, it is not yet as widespread as the CVSSv3.

1.2 Scope of this work

The challenge for organizations is to find the right balance between the two approaches
in order to develop an effective and efficient cybersecurity strategy. It is often difficult to
decide which approach should be pursued first in order to ensure the greatest possible
security. This work tries to answer this question by comparing both concepts in growing
network environments.
Both concepts could also be compared regarding the organization’s cybersecurity matu-
rity level [WOS21, Mie20]. There are many guidelines like the ISO-27000 series and the
NIST SP 800 series that lay out rules to follow for better cybersecurity. Many cybersecurity
maturity frameworks implement those guidelines in their models. The Capability Matu-
rity Model Integration (CMMI) [Yam17] by ISACA, the NIST Cybersecurity Framework
2.0 [CSF24], the CIS Community Defense Model 2.0 [Sto21] from the Center for Internet
Security and the Gartner Score [aia19] are well-known cybersecurity maturity models.
Compliance with the requirements of such frameworks can be either self assessed or cer-
tified depending on the framework. Those models not only consider the hardware, soft-
ware and configuration of networks, but also the organizational environment including
the people and processes. Therefore, evaluating results of this work according to cyber-
security models is not applicable, because simulating an entire organization would be too
much for this work.
Furthermore, specialized maturity models exist. The ENISA CSIRT framework [fNS19]
for example is a model for CSIRTs (Cybersecurity incident and response team) that applies
only to a specialized unit within the organization or an external contractor. In Germany,
the ISO 27001 standard [ISO05] is a widely used framework, whereas the NIST Cyberse-
curity Framework [CSF24] is the most widely used worldwide.

1.3 Contributions

In this thesis, the concepts of “automated penetration testing” and “vulnerability manage-
ment” are examined in terms of vulnerabilities found in each case. The aim is to establish
a guideline or recognizable trend for decision-making that, taking network growth into
account, should show which of the two concepts is better suited to the current situation of
an organization.

5



1 Introduction

A test network was set up that contains vulnerable systems to test the scanners against
each other. Vulnerability scans were carried out with both commercial and open source
tools, to create the broadest possible picture that compares the concepts. The commercial
tools used are Pentera Core [Pen15] from Pentera for automated penetration testing and
the Tenable Nessus Professional [Der98] scanner from Tenable for vulnerability manage-
ment.
The open source alternatives used are the jok3r project [jok17] for automated penetration
testing and Greenbone Community Edition [Gre07] with the OpenVAS for vulnerability
management.
Vulnerability management and automated penetration testing are performed in the inter-
nal variant, as the results should be as comprehensive and meaningful as possible for the
organization and not only find superficial vulnerabilities from an attacker’s perspective.
No credentials for scanning installed software were provided.
In particular, this work has the following objectives:

1. Compare the concepts of “vulnerability management” and “automated penetration
testing” in terms of vulnerabilities found by each approach.

2. Establish a guideline or trend to follow for decision-making in consideration of the
network growth that shows what concept is better suited for the current situation of
the organization.

1.4 Axians IT Security GmbH

This bachelor thesis was written in cooperation with Axians IT Security GmbH (AITSec).
The Axians Group is part of the global brand network for ICT solutions from VINCI En-
ergies. AITSec is the organization of the group specializing in cybersecurity and acts as
a managed service provider that carries out vulnerability scans and automated penetra-
tion tests for customers at regular intervals. The lab environment for conducting scans,
including the resources for virtual machines and licenses for commercial products were
provided by AITSec for this work. The VLAN and firewall policies for the lab environ-
ment were configured by AITSec.

1.5 Organization of this thesis

This thesis is organised as follows:
Chapter 2 looks into previous work, first considering similar research, then more on the
theoretical background of the concepts. Followed by an outlook on the relevance of this
work and research comparing tools and methods used at the end.

6



1.5 Organization of this thesis

The Chapter 3 starts by describing the modeled situations. After that, the specific test
environments for each network are listed. Then, the tools used for scanning the networks
and the process of finding suitable open source tools for this work is documented. The
chapter closes with the configurations for each scanner that were used in the scans.
Chapter 4 presents the results data and interpretations of the results. The chapter begins
with the evaluation of the scan reports that form the resulting data. A simple overview
on the numbers with obvious observations is given, further processed and examined in
the context of comparing the two approaches. Thereafter, the limitations that presented
themselves during the work on the project are laid out. Lastly, interpretations of the results
that answer the hypotheses are given.
Finally, in Chapter 5 the most important findings of this thesis are concluded and open
problems that provide further research directions are discussed.

7





2 Related work

This section is split into: Similar work, theoretical background on the concepts, relevance
of this work, methodologies and tools used in the field of cybersecurity.

2.1 Similar work

Mietala [Mie20] investigated when an organization should start with vulnerability man-
agement. Both internal and external scans were considered. The work mainly examines
various cybersecurity frameworks and maturity models to determine when an organiza-
tion should start using vulnerability management. In addition, various commercial vul-
nerability management scanners are presented. The work mentions penetration testing
as a possible way to find vulnerabilities, but does not go into more detail about penetra-
tion testing. The researcher found out, that the Sans institute guide for implementing a
vulnerability management process and CRR Supplemental Resource Guide for vulnerabil-
ity management provide an easily adaptable vulnerability management implementation
process. Cybersecurity frameworks can be overwhelming for small companies, but these
guidelines can theoretically be followed by them. Cybersecurity maturity models on the
other hand are best utilized by medium-sized or larger enterprises, that can invest the
time and effort to follow all controls set by the model. The Gartner IT Score provides
the easiest entry in this regard. A specific point in time for when an organization should
start vulnerability management could not be determined however and should instead be
estimated by the organization itself.

2.2 Theoretical background

Doshi et al. [DT15] compare the two concepts vulnerability assessment and penetration
testing. A brief overview of the two concepts is given and the differences are highlighted.
Abu-Dabaseh et al. [ADA18] provide an overview of the two concepts of automated pene-
tration testing and manual penetration testing and compare them in various aspects, such
as efficiency, costs and completeness of the vulnerabilities that were found. Shah [Sha20]
gives an overview of the two concepts automated penetration testing and manual pen-
etration testing and examines automated penetration testing in more detail. The tools
OWASP ZAP, Burp Suite, Nikto2 and Arachni are presented and compared. An overview

9



2 Related work

of the two concepts of vulnerability management and automated penetration testing in
combination is given by Shah and Mehtre [SM15]. They present various tools that can be
used for the execution of vulnerability scans. Differences between internal and external
scans are highlighted. The article details the VAPT approach, in which vulnerability man-
agement and manual penetration testing are combined. Khera et al. [KKSG19] also focus
on the VAPT approach to highlight the importance of cybersecurity measures in today’s
society. They draw similar conclusions to [SM15].

2.3 Why this is relevant

The “Cybercrime Bundeslagebild 2022” [BKA23] and the most current “Cybercrime Bun-
deslagebild 2023” [BKA24] (Cybercrime Federal Situation Report) were used to illustrate
the threat situation posed by cybercrime and financial damage caused by cyberattacks.
The last years have seen a steady increase in cybercrime internationally and damages
resulting from cyberattacks have become existence threatening for many organizations.
Data from the “ENISA Threat Landscape 2023” [LTT+23] report and the “Die Lage der IT-
Sicherheit in Deutschland 2023” [BSI23] (“Situation report on cybersecurity in Germany
2023”) report from the Federal Office for Information Security of Germany shows, that
ransomware attacks are the prime risk for organizations nowadays. Most of the targets of
cybercrime are small to medium-sized businesses, so it is important to develop an efficient
and working cybersecurity strategy for every organization.

2.4 Methods and tools

Sharma et al. [SSN23] compare different scoring systems for prioritizing vulnerabilities.
The paper also presents its own scoring system with a focus onto the environment and the
expected impact of a vulnerability. These metrics are also compared to the current CVSS
versions up to version 3. The work highlights the importance of such additional metrics,
even the new CVSSv4 implements similar new metrics. Walkowski et al. [WOS21] inves-
tigated the prioritization of vulnerabilities and presents different scoring systems that can
be used for the prioritization of vulnerabilities. The authors also use different test envi-
ronments for scanning for vulnerabilities with the Nessus scanner and show that different
scoring systems impact the predicted amount of time that has to be spent to fix vulnera-
bilities found on the systems. They show, that the right prioritization can accelerate the
process of removal of the critical vulnerabilities that were detected.

10



3 Methodology

The modeled organization situations are described in this chapter. An existing internal
test network, as shown in Section 3.2, for testing vulnerability scanners was extended and
used to run the tests. The test network was split into three different sizes with the first size
containing just three of the available hosts, the second size jumping to 7 hosts and the last
size doubling that to 14 hosts. With each size new and more enterprise focused services get
introduced into the network. Following that, Software and operating systems are detailed
and initial system configurations like usernames and passwords are described. Thereafter,
the tools used for scanning the networks are described, as well as configurations for each
scanner.

3.1 Organization models

At first, as modelled by the state new, the network only consists of three hosts, two of
which are client systems and one server. This setup should mimic a newly formed orga-
nization with two employees and one simple webserver running WordPress. It includes
the essential services needed to run the business. The organization uses primarily free
software and has no active directory domain controller or other means of central user
management. This organization is primarily focused on creating and expanding its busi-
ness. Established represents an established organization that created a working business.
Two new hosts have been added, one Windows 8.1 client resembles an aging effect of the
network and an Ubuntu client to diversify operating system types. This network contains
a domain controller for central user management and all hosts have been joined to the
domain, except for the Ubuntu host. Besides the domain controller, a second server was
added for moving resources towards virtualization. This new server is based on Alpine
Linux and uses Docker for containerizing applications. The WordPress site was moved
to this server and the previous server was repurposed to be a development server with
the XAMPP software package installed. In sum, this network consists of 7 hosts with 3
being server systems and 4 clients. At last, advanced doubles the number of hosts to 14
by adding yet another Windows-based server that acts as a dedicated NAS by providing
SMB shares. The aging of networks is expanded upon with a Windows 7 machine and
an Ubuntu 16 machine. Two additional Windows 10 hosts and a Debian 11 client have
been added as well. This time, all hosts are joined into the domain with the help of the

11



3 Methodology

sssd service for Linux based systems. The development server has been equipped with
the DVWA1 (damn vulnerable web application) running to demonstrate the organizations
first attempt at creating their own software. An Android 9 virtual machine is also added
to this network as an experimental device to get insights on mobile devices in the context
of possible attack vectors.

3.2 Test network

Figure 3.1: The structure of the existing test network

An existing test network for evaluating vulnerability scanners as shown in Fig. 3.1 was
extended to include different operating systems and operating system versions. The orig-
inal test network included Windows 10 clients only and one Debian 11 client. Extensions
included a variety of Windows clients, additional Ubuntu clients and some servers as
shown in Table 3.1.

Table 3.1: Available machines in the extended test network

Host Operating system Lifetime status

dc Windows Server 2019 Current
win-server Windows Server 2022 Current
ubuntu-server Ubuntu Server 24 Current
alpine-server Alpine Linux 3.20 Current
win-7-client Windows 7 Pro SP1 End of support
win-8-1-client Windows 8.1 Pro End of support
win-10-client Windows 10 Pro 22H2 Current
win-10-client-2 Windows 10 Pro 22H2 Current
win-10-client-3 Windows 10 Pro 22H2 Current
win-11-client Windows 11 Pro 23H2 Current
ubuntu-16-client Ubuntu 16.04.7 End of support
ubuntu-24-client Ubuntu 24.04.1 Current
debian-11-client Debian 11 Current
android-9-client Android 9.0 R2∗ End of support

∗android-x86 virtual machine
1https://github.com/digininja/DVWA

12

https://www.android-x86.org/
https://github.com/digininja/DVWA


3.2 Test network

Together with the network states the test network represents different organization sizes.
Depending on the state, a selection of systems is present in the network and additional
services may be installed on the hosts. The reference date for software versions mentioned
in this section is 10/30/2024.

Table 3.2: Network state “New”

Host Services Description

ubuntu-server WordPress + plugins Organization website + shop
(Plugin download, WooCommerce)

win-10-client Libre Office, RDP enabled, Employee 1’s workstation
Steam Epic Games Launcher

win-11-client Libre Office, RDP enabled, Employee 2’s workstation
Discord, Spotify, WhatsApp, µtorrent

Network state “New” As the clients should not resemble purpose built work machines
they have some common personal programs installed. They were both updated to the
latest available version of their respective operating system.

The server represents a single webserver running WordPress with a plugin suite for run-
ning web shops. The WordPress website was set up on an Ubuntu server following a
tutorial from ubuntu.com2. This yields a classical LAMP stack with a Linux based oper-
ating system, Apache HTTP Server as the webserver, MySQL for the database and a PHP
codebase. As the new organization does not care about security at first and instead fo-
cuses on setting up a working business the server was set up with the username “user”
and the password “password”. The mysql password is set to “password”. The tutorial
states a username and password should be chosen that will only impact WordPress. So
“admin” as the username and “secure-password” as the password were entered into the
installation web page (Fig. 3.2).

The first result when searching the internet for a WordPress shop plugin was WooCom-
merce, hence it was also added to the system. A vulnerable version of the WordPress
plugin download plugin was also added to the installation for convenient plugin man-
agement. No additional plugins for enhancing security were added to the WordPress
installation.

The clients depict personal machines that are used for work as a newly founded organi-
zation may not have the resources yet to buy extra work computers for their employees.
As such, the clients contain common consumer software.

2https://ubuntu.com/tutorials/install-and-configure-wordpress

13

https://ubuntu.com/tutorials/install-and-configure-wordpress


3 Methodology

Figure 3.2: WordPress 5 minute installation screen

All clients contain the newest available versions for their operating system and addition-
ally installed software. The server has also gotten newest available operating system and
WordPress version, including the installed plugins, except for the vulnerable plugin.

Table 3.3: Network state “Established”

Host Services Description

dc Microsoft Active Directory Domaincontroller, SMB share
ubuntu-server XAMPP software package Development server
alpine-server Docker, Portainer, docker-mailserver Web server, mail server
win-8-1-client No further changes Employee 1’s workstation
win-10-client Libre Office, RDP enabled, Employee 2’s workstation

Steam Epic Games Launcher
win-11-client Libre Office, RDP enabled, Employee 3’s workstation

Discord, Spotify, WhatsApp, µtorrent
ubuntu-24-client No further changes Employee 4’s workstation

Network state “Established” In this state the network has grown to include two more
clients and a domain controller as well as another dedicated server for virtualization us-
ing Docker containers. Every Windows host was added to the domain controller in the
domain ACME.CORP. The domain controller exposes a network share at \\dc\data with
the default configuration for the SMB share – fast profile.

14



3.2 Test network

An Alpine Linux server was set up following the default installation procedure with no
additional users added and “password“ as the root password. The Docker host was set up
following a tutorial from thelinuxcode.com3. To ease the management of Docker contain-
ers for the organization a Portainer container was added and subsequent compose stacks
were managed through this Portainer instance. The WordPress containers were set up fol-
lowing a tutorial from digitalocean.com4. The only part deviating from the tutorial is the
certificate configuration with certbot, a self-signed certificate is used instead. The tutorial,
last updated on January 31, 2024, does not install the most recent WordPress version, but
surprisingly uses version 5.1.1 released in May 2019. Besides the WordPress webserver a
mailserver5 was added to the alpine server. This project has its own documentation and
was followed up to, but not including the point Further Miscellaneous Steps. The authorita-
tive DNS server in this case is the domain controller and the DNS entries mentioned in the
tutorial were added to its acme.corp zone. www.acme.corp also links to the alpine server.
As the organization has seen that penetration testing was able to identify credentials for
the ubuntu server, the password of the “user” user was changed from “password” to
“secure-password”. This change was made, because that is the WordPress admin user
password, and it was not identified by any scanner, so it has been proven to be “secure”.
The organization is unaware of the dangers of reusing passwords. Because the Word-
Press instance was migrated to the alpine server, this Ubuntu server can now be used for
other purposes. This machine will now be used as a development server and the XAMPP
software package is installed.
A Windows 8.1 client was added to the network to simulate an aging network and an
Ubuntu 24 client has been added to diversify operating system types.
All additional systems configured for this network have predictable usernames and weak
passwords.

Network state “Advanced” A second Windows server was installed and set up to func-
tion as a dedicated NAS in the same way as the primary domain controller’s SMB share.
Another two Windows 10 clients were added to the network and joined to the domain. A
further Windows 7 client was added to expand the aging effect of the network. For the
same reason an Ubuntu 16 client was also added and joined to the domain with sssd.
The last additional Linux based system is a Debian 11 client to contribute to operating
system diversity.
An Android client was also added to the network to represent the significance of mobile
devices in personal and corporate environments. The Android-x86 project was used to

3https://thelinuxcode.com/install-docker-alpine-linux
4https://www.digitalocean.com/community/tutorials/how-to-install-wordpress-with-docker-compose
5https://github.com/docker-mailserver/docker-mailserver

15

https://thelinuxcode.com/install-docker-alpine-linux
https://www.digitalocean.com/community/tutorials/how-to-install-wordpress-with-docker-compose
https://github.com/docker-mailserver/docker-mailserver


3 Methodology

realize an Android virtual machine.
All additional systems configured for this network have predictable usernames and weak
passwords.

Table 3.4: Network state “Advanced”

Host Services Description

dc Microsoft Active Directory Domaincontroller
win-server SMB shares Dedicated NAS
alpine-server Docker, Portainer, WordPress, Webserver and mailserver

docker-mailserver
ubuntu-server DVWA Testing server
win-7-client No further changes Employee 1’s workstation
win-8-1-client No further changes Employee 2’s workstation
win-10-client Libre Office, RDP enabled, Employee 3’s workstation

Steam Epic Games Launcher
win-10-client-2 MS Office Employee 4’s workstation
win-10-client-3 MS Office Employee 5’s workstation
win-11-client Libre Office, RDP enabled, Employee 6’s workstation

Discord, Spotify, WhatsApp, µtorrent
ubuntu-16-client sssd∗ Employee 7’s workstation
ubuntu-24-client sssd∗ Employee 8’s workstation
debian-11-client sssd∗ Employee 9’s workstation
android-9-client No further changes Employee 10’s work phone

∗sssd is a service that can be used to integrate linux based clients into an active directory

3.3 Tools

The comparison of the two concepts vulnerability management and automated penetra-
tion testing is carried out using two market-leading tools in these categories. Tenable
Nessus Professional was used for vulnerability management and Pentera Core was used
for automated penetration testing.
Tenable Nessus Professional is a network vulnerability scanner that is continuously de-
veloped to this day. It uses the nmap (Network Mapper) scanner to scan targets for open
ports. The Nessus Professional product can be used as a standalone scanner or integrated
into Tenable’s Security Center platform. For this work the standalone variant was chosen.
Tenable is the largest (by market share) company of three major players in the field of
vulnerability management as can be seen in Fig. 3.3.
Tenable Nessus Professional provides a wide variety of scan types and options to con-
figure scans. Host discovery, vulnerabilities and compliance are categories for scan types.

16



3.3 Tools

Figure 3.3: Market share of providers of vulnerability management tools

For this work the vulnerability scan type “Basic Network Scan” was chosen as it offers the
least configuration options and the most preconfiguration by Tenable. Scans are split into
a discovery phase and an assessment phase where discovered services are further probed.
The tool has inbuilt reporting with multiple templates that focus on different aspects like
vulnerabilities found, compliance or remediation of vulnerabilities.

Pentera Core is a fully automated penetration testing tool for internal network penetra-
tion tests. It takes IP ranges as its input and can dynamically expand the scope, for exam-
ple to include identified Active Directory servers. Dynamic expansion was not allowed
in this work. Pentera uses vulnerability scanners like OpenVAS6 as a base to discover
vulnerabilities and focus on possibly exploitable ones. The selection of vulnerabilities is
then actively attacked and reported as existent if the attack was successful. If a successful
attack opens the door for further vulnerabilities this cycle is repeated to gather as much
information as possible. For example an SSH vulnerability may allow the tool to perform
remote code execution and dig further into the systems files and services. Pentera also
searches for files that may contain password hashes in standard locations or user created
files with obvious names that may yield additional credentials. Actions taken by Pentera
Core are categorized as achievements and may result in an exploitable vulnerability. If an
action can pose significant risks for the target they have to be manually approved. Besides
the above, which applies to the Black-Box testing scenario the tool offers Gray-Box test-
ing where specific goals and additional starting information can be provided and targeted
testing where scenarios like ransomware emulation can be played through on the target

6https://hub.docker.com/r/penpublicreps/openvas

17

https://hub.docker.com/r/penpublicreps/openvas


3 Methodology

network. When exporting the results as a report two templates can be chosen from. An
executive summary and a detailed report.
Other products similar to the Pentera suite exist as well and mainly run under the term
“Breach and Attack Simulation” (BAS).
To better compare the concepts and not just two products additional open source vul-
nerability scanners and penetration testing tools were used to examine the test network.
Research for suitable FOSS alternatives to Pentera and Tenable solutions was conducted
using the Google search engine as well as targeted searches on GitHub. The goal was to
find free and open source network vulnerability management scanners and automated
penetration testing tools.
Promising results for vulnerability management included:

• Tenable Nessus Essentials
• OpenVAS / Greenbone Community Edition

Tenable Nessus Essentials (formerly Nessus Home) is the free version of Tenable Nessus
Professional. As such, it was considered too close to Tenable Nessus Professional and
therefore unsuitable for a comparison.
Greenbone Community Edition is a collection of tools around the OpenVAS (Open Vulner-
ability Assessment Scanner). OpenVAS originated as a fork of Nessus Home, but since
the fork in 2005 the two have diverged enough in development to consider them separate
products and an alternative to each other. The Federal Office for Information Security
(BSI) recommends using Greenbone Community Edition7. The specific versions of those
tools are listed in Table 3.5.

Table 3.5: Used software for vulnerability management

FOSS Name Version Release date

✗ Tenable Nessus Professional 10.8.3 (#10) 09/11/2024
✓ Greenbone Community Edition 23.11.0 (OpenVAS 23.8.5) 08/19/2024

Results for automated penetration testing included:

• Web application penetration testing tools like OWASP ZAP, w3af, . . .
• metasploit community edition and metasploit pro (not FOSS)
• Armitage
• Legion/Sparta
• jok3r

7https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/
Informationen-und-Empfehlungen/Freie-Software/Tools/OpenVAS/OpenVAS_node.html

18

https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Freie-Software/Tools/OpenVAS/OpenVAS_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Freie-Software/Tools/OpenVAS/OpenVAS_node.html


3.3 Tools

The metasploit framework, is a suite of penetration testing tools that contains a collection
of reconnaissance and exploit modules. Only the paid version, metasploit pro, supports
in-depth automations. However, the capabilities of the suite made it a good candidate
for subsequent programs that build on metasploit community edition. It is noteworthy to
point out, that metasploit offers extendability through simple batch command files called
resource files and embedded Ruby code within resource files that offers much more flex-
ibility at automating attacks. Furthermore, metasploit offers an RPC API with client li-
braries in many different programming languages [VO20].

Searching for tools that build upon metasploit yielded the following results: AutoSploit8,
AutoXploit9, metasploit-autopwn10, Mosquito11, auto-msf12, MapSploit13, Quick_sploit14,
MSF-EXPLOIT15, autoMetasploit16, Shennina17, deep_exploit18, mushikago-femto19, penta20,
Armitage21.

Most of these tools make no serious attempt at leveraging the full capabilities of the frame-
work. Multiple were essentially wrappers for the Shodan.io API or comparable services
that try to find devices connected to the internet and just bombard them with the most
common exploits. A reconnaissance or probing phase is not part of them. Therefore, these
tools were not applicable for this work, as this research focuses on tools for penetrating
a network, so a CIDR notation target or multiple IP addresses as targets should be ac-
cepted as inputs. In many metasploit exploit modules it is actually possible to use the
RHOSTS variable that targets multiple hosts. But these tools instead utilize the RHOST
variable targeting a single host. These variables stand for remote hosts and remote host
respectively.

Armitage is another tool building upon metasploit. It provides an easy GUI for quickly
performing diverse auxiliary and exploit modules with metasploit and can be considered
one of the most advanced metasploit tools. The projects seems abandoned however, as the
last update to the repository was made in 2016 and the website is down since 2021. The
project used and linked to in this work is a fork of a fork of the original project and also

8https://github.com/NullArray/AutoSploit
9https://github.com/Yashvendra/AutoXploit

10https://github.com/hahwul/metasploit-autopwn
11https://github.com/r00t-3xp10it/resource_files
12https://github.com/akr3ch/auto-msf
13https://github.com/CorvusCodex/MapSploit
14https://github.com/Madhava-mng/Quick_sploit
15https://github.com/isuruwa/MSF-EXPLOIT
16https://github.com/paulosgf/autoMetasploit
17https://github.com/mazen160/shennina
18https://github.com/TheDreamPort/deep_exploit
19https://github.com/PowderKegTech/mushikago-femto
20https://github.com/takuzoo3868/penta
21https://github.com/r00t0v3rr1d3/armitage

19

https://github.com/NullArray/AutoSploit
https://github.com/Yashvendra/AutoXploit
https://github.com/hahwul/metasploit-autopwn
https://github.com/r00t-3xp10it/resource_files
https://github.com/akr3ch/auto-msf
https://github.com/CorvusCodex/MapSploit
https://github.com/Madhava-mng/Quick_sploit
https://github.com/isuruwa/MSF-EXPLOIT
https://github.com/paulosgf/autoMetasploit
https://github.com/mazen160/shennina
https://github.com/TheDreamPort/deep_exploit
https://github.com/PowderKegTech/mushikago-femto
https://github.com/takuzoo3868/penta
https://github.com/r00t0v3rr1d3/armitage


3 Methodology

the version currently provided in the kali linux package manager repository. This fork
was last updated in 2022 and consist only of compatability updates with newer software
versions. Also, Armitage does not automatically perform actions, the user has to decide
on the next useful action and configure parameters for the exploits. As such Armitage can
be considered semi-automatic only. Therefore, Armitage is a useful tool, but not the right
choice for this research’s questions.

AI is thrown into the mix with tools such as Shennina, deep_exploit and mushikago-femto.
These tools also use the metasploit framework for performing exploits and use AI to select
the exploit module. The usefulness of AI is debatable in these cases, as even the authors
of the Shennina project describe the usage of AI in their code as follows: “The prob-
lem should be solved by a hash tree without using ‘AI’, however, the HITB Cyber Week
AI Challenge required the project to find ways to solve it through AI.”22 The proposed
framework in [VO20] builds upon this realization by implementing their AI approach not
through deep neural networks, but instead use a decision tree. In the end those AI tools
have shown to be unsuitable for this work as they also allow just a single target.

Next up, Legion is a fork of Secforce’s Sparta and a preinstalled tool on kali linux. The last
update to Sparta was made in 2020. Legion forked from Sparta in 2018 and was updated
until 2023. Multiple hosts or a CIDR notation can be used as inputs for scans. The tool pro-
vides a two phase approach that is also separated in its GUI. A reconnaissance phase using
different nmap scan configurations in six steps; the imported targets first tested for reach-
ability and are then scanned for vulnerable services. And an exploitation / brute forcing
phase, where possibly vulnerable services can be sent to hydra for cracking credentials
or are automatically scanned by subsequent tools such as nikto, SMBenum, dirbuster and
more. CVEs are also automatically added to the host descriptions if a vulnerable service
was detected. Legion runs unstable and crashes can be observed regularly. It describes
itself as a semi-automated penetration testing tool and besides brute forcing it actually
does perform further actions automatically. The instability, lack of reporting and disor-
dered result tabs that open another tab for each run of further tools, even if that tool did
not yield any results, made it unsuitable for this work.

The jok3r project is an attempt at unifying existing tools and providing a whole suite of
scanners to examine a single host or multiple targets. The last update to the project was
made in 2019, a fork was maintained until late 2020 and added a web UI and depen-
dency updates. Multiple targets have to be defined in a text file following the format
HOST,PORT,SERVICE per line. Here it becomes apparent that creating such a file is no
easy task, in particular it is not really feasible manually. Luckily importing a nmap XML
scan output is possible and provides an easy way of defining a clearly scoped scan con-

22https://github.com/mazen160/shennina#why-are-we-solving-this-problem-with-ai

20

https://github.com/mazen160/shennina#why-are-we-solving-this-problem-with-ai


3.3 Tools

figuration. The project consists of a comprehensive architecture including exporting the
results as an HTML report. Managing tools and scanning is accessible through a CLI and
analysis and reporting is available through an interactive CLI. Similarly to metasploit
workspaces jok3r offers the option to save a scan configuration and results as a so-called
mission for later retrieval.

Figure 3.4: jok3r architecture (https://github.com/koutto/jok3r#id6)

Fig. 3.4 gives an overview of the structure of the jok3r tool. It is composed of three main
parts; the toolbox, attacking, and database management with reporting.

Trying to run the project as is on a modern OS version fails due to outdated dependencies.
However, the project is also available as a single docker image about 27 GB in size, which
compared to commercial tools like Pentera Core that use a whole compose stack for the
full product are surprisingly not that far apart in disk requirements. jok3r provides the
necessary possibilities appropriate for this work.

Overall it proved difficult to find suitable FOSS alternatives to existing commercial au-
tomated penetration testing tools. The metasploit framework is very valuable for manual
penetration testing, but extensive tools for automated penetration testing are scarce. How-
ever, jok3r also utilizes metasploit exploits as part of its toolchain. The specific versions of
those tools are listed in Table 3.6.

21

https://github.com/koutto/jok3r#id6


3 Methodology

Table 3.6: Used software for automated penetration testing

FOSS Name Version Release date

✗ Pentera Core 6.2.2.2 10/2024
✓ jok3r 3 beta 2 07/10/2019

3.4 Scanning the networks

Scans were performed sequentially, so that no two tools were interfering with another.
The network states were examined in the following order: new, established, advanced.

Tenable Nessus Professional The preset “Basic Network Scan” was chosen as it con-
tains recommended settings chosen by Tenable. All default settings were used unless
stated otherwise. Changes included:

Discovery > Scan Type: Port scan (all ports)

Assessment > Scan Type: Scan for known web vulnerabilities

Report > Designate hosts by their DNS name: Yes

Report > Display hosst that respond to ping: Yes

Report > Display unreachable hosts: Yes

No credentials were provided for this scan configuration.

Greenbone Community Edition The scan targets were configured with the following
relevant options:

Port List: All IANA assigned TCP and UDP

Alive Test: Scan Config Default

Credentials: none

Except for the addition of UDP ports all options remain the default options chosen by the
tool.
The scan task was configured with the following relevant options:

Min QoD: 70%

Scanner: OpenVAS Default

Scan Config: Full and fast

Order for target hosts: Sequential

Maximum concurrently executed NVTs per host: 4

Maximum concurrently scanned hosts: 20

All these options are the default options chosen by the tool.

22



3.4 Scanning the networks

Pentera Core The preset “Penetration Testing (Black Box)” was chosen and every option
was left in the default state except for those below:

Require Approval for Exploits: no

Allow Services Bruteforce: yes

Require Approval for Services Bruteforce: no

Allow Out of IP Range Spoofing: no

Allow Automatic Active Directory Controller(s)

Identification and Queries: no

No credentials were added during the scan. All action approval requests during the scan
were approved.

jok3r jok3r is the only tool, that requires a nmap XML output as its input. The nmap
scan was performed with the following options:

nmap -A -sT -sU -Pn -iL input.txt -oX output.xml

The nmap scan targets the most common 1000 TCP and UDP ports (-sT, -sU) with vul-
nerability detection turned on (-A) while skipping host discovery and assuming all hosts
are online (-Pn). This is a good compromise between scan speed and results. Targets are
defined in an input list (-iL) and results are saved as an XML output (-oX). The findings of
the nmap scan are imported into jok3r as all possible target services. No further discovery
process is taking place during the attack phase. In the attack phase jok3r prompts the user
for approval before executing actions such as exploits or further probing. In each scan
every action proposed by the tool was confirmed and executed.
A noteworthy mention is that jok3r frequently encounters syntax errors while calling other
tools. This may be related to its last update being released 5 years ago.

23





4 Results

Table 4.1: Amount of vulnerabilities found by each scanner

Network state Scanner Low Medium High Critical

New Tenable Nessus Professional 3 13 4 1
New Greenbone Community Edition 5 6 0 –
New Pentera Core 3 0 5 13
New jok3r 0 9 + 1 0 + 1 –
Established Tenable Nessus Professional 10 56 12 12
Established Greenbone Community Edition 10 27 7 –
Established Pentera Core 6 0 5 0
Established jok3r∗ 0 20 + 5 10 + 1 –
Advanced Tenable Nessus Professional 11 36 11 6
Advanced Greenbone Community Edition 16 17 12 –
Advanced Pentera Core 13 0 18 12
Advanced jok3r∗∗ 0 26 + 8 8 + 2 –

∗During the second scan jok3r reported a lot of FTP vulnerabilities, after manually checking for
actually installed FTP software 1012 false positives were removed from the report. A further 5
vulnerabilities could not be categorized in severity and were added to the results in the current
fractions; 3 medium and 2 high.
∗∗After the third scan the same 5 vulnerabilities could not be categorized in severity and were added
to the results in the current fractions; 4 medium and 1 high.

All scan results for each network state are listed in Table 4.1 and categorized by severity.
Every tool uses the CVSS to categorize vulnerabilities except for jok3r. jok3r does not cat-
egorize vulnerabilities at all, but most of its underlying tools do. CMSmap is an example
for this and happens to be the only tool reporting vulnerabilities for the first scan, so its
evaluation from low to high is used for jok3r here instead. The second scan did also con-
tain vulnerabilities reported by CMSmap, findings from other tools that provide a severity
rating and findings from other tools that have no CVE, MS bulletin or other categorizing
information assigned. The evaluation of vulnerabilities for jok3r overall is similar to the
CVSSv2. Findings without a rating get added equally on top of the distribution of vul-
nerabilities according to the current distribution, so they don’t change the ratios but count

25



4 Results

towards the amount of vulnerabilities found. Greenbone Community Edition evaluates re-
sults from low to high as well, so both tools balance each others results by using this same
three-step scale. Greenbone Community Edition does use CVSSv3 categorized vulnerabil-
ities also, but backports it into the CVSSv2 categories. This can be easily done, as CVSSv3
only introduces subdivisions of the CVSSv2 categories. jok3r does also not count gathered
credentials as a vulnerability so an extra vulnerability point is awarded manually for ev-
ery host and service combination where jok3r found credentials. Multiple credentials for
one host and service combination count as one vulnerability. If jok3r was able to gather a
username and a password, a high vulnerability was added, as medium to critical seems
to be a common CVE category assignment for such vulnerabilities23. If jok3r was able to
gather a username only, a medium vulnerability was added, as medium seems to be a
common CVE category assignment for such vulnerabilities24.

Figure 4.1: Sum of vulnerabilities found across all test networks

The vulnerability amounts found by each tool have distinctive characteristics. All tools
found more server vulnerabilities than client vulnerabilities. Tenable Nessus Professional
found by far the most vulnerabilities, as seen in Fig. 4.1, with 175 in total (65 client, 110
server). Pentera Core found a total of 75 vulnerabilities, 30 of which were found in clients,
45 in servers. Greenbone Community Edition detected a few more vulnerabilities at 100 in
total, 30 in clients, 70 in servers. jok3r almost exclusively found vulnerabilities on servers.
Just a single client vulnerability (MS17-010/EternalBlue) was detected by the tool. A fur-
ther 90 vulnerabilities were detected on server systems, adding up to 91 total vulnerabili-
ties found.
Both Pentera Core and jok3r found fewer vulnerabilities in total than their vulnerabil-
ity management counterparts. Tenable Nessus Professional and Greenbone Community
Edition both resemble a normal distribution, whereas Pentera Core and jok3r lean more
23https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=password+disclosure
24https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=user+enumeration

26

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=password+disclosure
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=user+enumeration


4.1 Guideline

Figure 4.2: Vulnerability category distribution for each scanner across all test networks

towards higher severity vulnerabilities. This confirms the assumption that automated
penetration testing focuses on high severity vulnerabilities, leaving aside vulnerabilities
that likely have no or low impact and show only those that have proven to be exploitable.
This is further proven in Fig. 4.2 where the distribution of vulnerabilities for each tool
shows, that automated penetration testing tools indeed focuses more on high severity vul-
nerabilities than vulnerability management tools. Interestingly Pentera Core also shows
a relatively high amount of low severity vulnerabilities against the trend set by no vulner-
abilities found that are of medium severity. This can be explained by those vulnerabilities
being “low-hanging fruits” that led to other higher severity vulnerabilities composing a
kill chain.

4.1 Guideline

(a) Clients (b) Servers

Figure 4.3: Amount of vulnerabilities depending on network size

As the results for client and server systems are quite different as displayed in Fig. 4.3 it is
not possible to create one simple formula for every scenario. The results for clients seem

27



4 Results

relatively straight forward, with a steady trend for all tools. Looking at server systems
paints another picture, both concepts cross in detected vulnerabilities and change leader-
ship throughout the experiment. A recognizable trend however in Fig. 4.4 is that vulnera-
bilities in hosts remain stable as vulnerability management found more vulnerabilities in
clients for every network than automated penetration testing did.

Figure 4.4: Absolute difference of vulnerabilities per concept depending on network size

When looking at Fig. 4.4 and the average vulnerability count per host in Fig. 4.5 it is easy
to see vulnerabilities in servers are more volatile than clients in the new network and at
first lean strongly towards automated penetration testing. This finding completely flips
for the second network established. At last both approach each other to the point of being
almost the same in the advanced network.

Figure 4.5: Average vulnerabilities found per host for each network

28



4.2 Limitations

4.2 Limitations

The results from jok3r in Table 4.1 show, that the number of vulnerabilities found may still
include false positives as 1012 vulnerabilities had to be removed from the results. When-
ever the script for checking the success of an attack does not work reliably automated
penetration can not hold up to its promise of no false positives. Automated penetration
testing is a relatively new method for enhancing cybersecurity, so not many great open
source tools exist for this field. But reliability will likely improve over time for those open
source tools.
No great open source alternative for fully automated penetration testing tools could be
found at the time of writing. jok3r was chosen, because it presents a collection of tools that
work together to form a complete and automated tool for penetration testing including
reporting capabilities.
The scans may not display the scanners full capabilities as all scans were left on the rec-
ommended settings for comparability. Tools such as Pentera Core build upon dynamic
environments with user interaction which was not present in the test networks. DHCP
attacks were not possible due to the test network being a manually configured network
without a DHCP server.
As the test networks are only a single network layer, important security measures such as
micro segmentation or any network segmentations at all were impossible to implement.
A multi layer network can prevent attacks with adequate firewall policies.
Simulating a network may yield different results than examining an existing network from
the real world.
The sample size of systems in a network may not be representative, it is difficult to man-
ually build an extensive test network with varying systems.

4.3 Evaluation of hypotheses

When providing both approaches with the same starting point of a black-box scan, vulner-
ability management finds a lot more vulnerabilities than automated penetration testing.
Most vulnerabilities found, for both approaches, are found in server systems. The biggest
danger for clients seems to be weak credentials used by the user. The only other promi-
nent vulnerabilities were due to outdated operating systems. Servers should therefore be
considered the most critical part of the network. Users should be advised to use strong
credentials and group policies should be enforced or other tools for keeping software up to
date should be deployed. Interestingly no results were reported for the Android machine,
so an assumption as mobile devices being a possible attack vector is not possible.
For an evaluation of what concept is better suited for an organization’s network two sides

29



4 Results

have to be considered. Client systems always display a higher detection rate of vulnerabil-
ities using vulnerability management. So for client systems continuous monitoring using
vulnerability management is the best approach. Servers on the other side are more volatile
in their detected vulnerability count. When just starting to build a network, automated
penetration testing finds more and obvious vulnerabilities, but after a while automated
penetration testing and vulnerability management converge to the point that none finds
reasonably more vulnerabilities than the other.
Automated penetration testing and vulnerability management do not have to be contrary
approaches however and may be best utilized complementary. Organizations that just
started building their network should use automated penetration testing for their servers
and vulnerability management for their clients. Vulnerability management should be a
permanent point for the organizations cybersecurity strategy. Automated penetration test-
ing in large networks may be dropped after a while or used less frequently to save costs.
If the budget is not a problem organizations should think about using both in parallel, but
actual benefits are not proven and can be examined by future work.

30



5 Conclusions

5.1 Summary

Three different sized networks were scanned using market leading commercial vulnera-
bility management and automated penetration testing tools and one respective alternative
free and open source tool. The results show, that vulnerabilities in client systems are more
often found using vulnerability management. This is a steady trend and does not change
when extending the network. For server systems, the results are volatile and suggest a
hybrid approach may be the best. By starting with automated penetration testing and sub-
sequently adding vulnerability management or switching between the two after a while,
most vulnerabilities will be detected. When looking at absolute numbers, it becomes ap-
parent, that vulnerability management discovers a magnitude more vulnerabilities than
automated penetration testing. This is explained through the distribution of vulnerabil-
ity categories found by each approach. Vulnerability management tries to unveil every
possible vulnerability in a system, even if the vulnerability just could pose a danger the-
oretically, but is actually prevented through other means. Automated penetration testing
focuses on the most critical vulnerabilities and those that can be exploited. Prioritization
of the results is handled different in each approach. Another result clearly shown in the
data when looking at average vulnerabilities per host is, that servers contain the most vul-
nerabilities and clients significantly less. Servers should therefore be considered the most
critical components of the network. Because of this, organizations should decide to use
automated penetration testing at first. When the amount of client systems in the network
starts growing, they should be monitored continuously using vulnerability management.

As with most of new concepts, commercial automated penetration testing tools are quite
expensive and, as such, may not be an applicable solution for organizations with tight
budgets. Recent reports have shown, that the risk associated with neglecting cyberse-
curity, especially in the beginnings of an organization, has proven to be critical in the
recent past and is predicted to rise even further in the future. So investing in cybersecu-
rity measures, either through MSSPs or trained employees, is crucial for an organization’s
sustained existence.

31



5 Conclusions

5.2 Discussion and open problems

Comparing absolute numbers may not be applicable when not using exhaustive scan con-
figurations, as automated penetration testing only focuses on exploitable vulnerabilities
and does not report existing, but non-exploitable vulnerabilities by default. Other scan
configurations may yield more or less detected vulnerabilities. An approach building on
this could be to count unique vulnerabilities found by one scanner but not by the other to
determine which concept can extend the known attack surface more and thus reduces the
entropy of possible network vulnerabilities. This would also resolve the question of using
these tools in parallel. The results suggest, that switching approaches for servers at some
point makes sense, but identifying unique vulnerabilities for each scan could definitively
answer whether the tools overlap or complement each other in detecting the vulnerabili-
ties.

Quality and prioritization of vulnerabilities also play a role. Finding a huge number of
vulnerabilities is good in one way, but bad in terms of processing the results and designing
a remediation plan, because vulnerabilities have to be prioritized. With an increasing
number of vulnerabilities prioritizing them becomes more difficult. Getting a less amount,
but immediate and confirmed high severity vulnerabilities could prove beneficial in this
context.

An interesting question is whether real company data will continue the trend seen in this
work and whether the results can thus be transferred to the real world. In this con-
text cybersecurity maturity can be considered and taken into account when defining a
trend. Also using cybersecurity maturity models could provide a better categorization
and maybe even make it possible to establish a formula that gives an immediate result,
instead of a general trend dependent on network growth. One drawback of this is the
scope of the calculation of an organization’s cybersecurity maturity score.

At the time of writing, it is safe to say that the gap between FOSS and commercial au-
tomated penetration testing tools is growing significantly as many projects seem to have
been abandoned around 2020 with the project maintainers shifting their focus in other di-
rections. An interesting project that could propel the scanning process itself is the zmap
project which aims to be a faster alternative to nmap. As most, if not all, scanners use
nmap for performing initial scans, replacing it with zmap could also speed up overall
development and testing of vulnerability scanners. Maybe the time savings could even
revive abandoned FOSS projects.

Artificial intelligence is a much discussed topic at the time and also a trend that more and
more manufacturers of cybersecurity software jump into. Where exactly AI can help in
the process of vulnerability management and automated penetration testing is question-

32



5.2 Discussion and open problems

able however, as the only real use case in scanners is deciding on the next best exploit
to try [VO20] However, vulnerability scanners can achieve the same results by using ex-
haustive methods. At least the cost of running a deep neural network could turn out to be
comparable to an exhaustive approach, leaving only more limited machine learning ap-
proaches such as decision tree learning. AI could indeed improve cybersecurity defenses,
but may be more useful when integrated in other products such as firewalls for detecting
suspicious network traffic live.
Future work can use a more sophisticated test network with multiple layers, firewalls
and intrusion detection. Big corporate networks easily contain multiple ten thousand
devices and many subnets and different networks overall. Many companies use a DMZ
for external facing services or even an air-gapped system for critical tasks. Almost always
intrusion detection is accompanied by intrusion prevention with dynamic firewall policies
that interrupt a possible compromise even though the target system may be susceptible to
the attack. By including these defense mechanisms in the test network it is possible to get
closer to a realistic network state. However building a test network with even a thousand
devices is still a tremendous task and may only be feasible by using an infrastructure as
code approach.
A big oversight not only in this work, but in almost all other work is the fact that a re-
alistic attack on a network does not encounter a static network without much traffic and
changes. Some exploits are only made possible due to users interacting with services in
the network making it a dynamic environment. For example phishing attacks, DNS poi-
soning or other disruptive tactics such as DDoS attacks on webservers or DHCP servers
are not at all regarded in a low traffic environment, even if the scanners poses the capa-
bility to utilize these attack vectors. Future work could simulate realistic user behavior
and corresponding traffic in the network while scanning. But fully and realistically sim-
ulating dynamic user behavior, especially interactions with webservers and attacks such
as phishing attacks presents a significant challenge. In the end it comes down to the in-
dividual persons’ behavior regarding whether the user falls active measures taken by the
scanners.
In a large enough environment it may be possible to predict user behavior based on prin-
ciples of crowd psychology. Therefore, it is important to also test the results of this work
against a big enough sample of real organization data.

33





References

[ADA18] Farah Abu-Dabaseh and Esraa Alshammari. Automated penetration testing :
An overview, 2018.

[aia19] Gartner Inc. and/or its affiliates. Gartner it score for security and risk manage-
ment. Technical report, Gartner Inc., 2019.

[BKA23] BKA. Cybercrime bundeslagebild 2022. Technical report, Bundeskriminalamt,
2023.

[BKA24] BKA. Cybercrime bundeslagebild 2023. Technical report, Bundeskriminalamt,
2024.

[BRW13] Harold Booth, Doug Rike, and Gregory A Witte. The national vulnerability
database (nvd): Overview. 2013.

[BSI23] BSI. Die lage der it-sicherheit in deutschland 2023. Technical report, Bunde-
samt für Sicherheit in der Informationstechnik, 2023.

[CSF24] The NIST Cybersecurity Framework (CSF) 2.0. February 2024.

[CVE] Common vulnerablities and exposures. Technical report, The MITRE Corpo-
ration.

[CVS15] Common vulnerability scoring system version 3.1. Technical report, FiRST,
2015.

[Der98] Renaud Deraison. Tenable nessus professional. Technical report, Tenable Inc.,
1998.

[DH23] Nghia Trong Dinh and Vinh Truong Hoang. Recent advances of captcha se-
curity analysis: a short literature review. Procedia Computer Science, 218:2550–
2562, 2023.

[DT15] Jignesh Doshi and Bhushan Trivedi. Comparison of vulnerability assessment
and penetration testing. International Journal of Applied Information Systems,
8(6):51–53, 2015.

35



References

[fNS19] European Union Agency for Network and Information Security. ENISA CSIRT
maturity assessment model. Publications Office, LU, 2019.

[GHA24] Github advisory database. Technical report, Github Inc., 2024.

[Gre07] Greenbone vulnerability management. Technical report, Greenbone, 2007.

[ISO05] Iso27001: Information security, cybersecurity and privacy protection - informa-
tion security management systems - requirements. Technical report, Interna-
tional Organization for Standardization, International Electrotechnical Com-
mission, 2005.

[jok17] jok3r network and web pentest automation framework. Technical report,
Jérémy Brun-Nouvion, 2017.

[KKSG19] Yugansh Khera, Deepansh Kumar, Sujay, and Nidhi Garg. Analysis and impact
of vulnerability assessment and penetration testing, 2019.

[LTT+23] Ifigeneia Lella, Eleni Tsekmezoglou, Marianthi Theocharidou, Erika Mago-
nara, Apostolos Malatras, RossenSvetozarov Naydenov, and Cosmin Ciobanu.
Enisa threat landscape 2023. Technical report, European Union Agency for
Cybersecurity, 2023.

[Mie20] Anssi Mietala. When should an organisation start vulnerability management?
Master’s thesis, 2020.

[MK15] Eshwar Mattadi and K Vijaya Kumar. Evaluation of penetration testing and
vulnerability assessments. International Journal of Electronics Communication and
Computer Engineering, 6(5):144–148, 2015.

[Pen15] Pentera core. Technical report, Pentera Ltd., 2015.

[Sha20] Mandar Prashant Shah. Comparative analysis of the automated penetration testing
tools. PhD thesis, Dublin, National College of Ireland, 2020.

[SM15] Sugandh Shah and Babu M. Mehtre. An overview of vulnerability assessment
and penetration testing techniques. J. Comput. Virol. Hacking Tech., 11(1):27–49,
2015.

[SSN23] Abhishek Sharma, Sangeeta Sabharwal, and Sushama Nagpal. A hybrid
scoring system for prioritization of software vulnerabilities. Comput. Secur.,
129:103256, 2023.

36



References

[Sto21] Valecia Stocchetti. Cis community defense model version 2.0. Technical report,
2021.

[VO20] Ovidiu Valea and Ciprian Oprisa. Towards pentesting automation using the
metasploit framework. In Sergiu Nedevschi, Rodica Potolea, and Radu Raz-
van Slavescu, editors, 16th IEEE International Conference on Intelligent Computer
Communication and Processing, ICCP 2020, Cluj-Napoca, Romania, September 3-5,
2020, pages 171–178. IEEE, 2020.

[WOS21] Michał Walkowski, Jacek Oko, and Sławomir Sujecki. Vulnerability manage-
ment models using a common vulnerability scoring system. Applied Sciences,
11, 2021.

[Yam17] Jeanne Yamfashije. Capability maturity model integration. 2017.

37


	Introduction
	Background
	Scope of this work
	Contributions
	Axians IT Security GmbH
	Organization of this thesis

	Related work
	Similar work
	Theoretical background
	Why this is relevant
	Methods and tools

	Methodology
	Organization models
	Test network
	Tools
	Scanning the networks

	Results
	Guideline
	Limitations
	Evaluation of hypotheses

	Conclusions
	Summary
	Discussion and open problems

	References
	Appendix
	Scan reports - network state new
	Greenbone Community Edition
	Tenable Nessus Professional
	Pentera Core
	jok3r

	Scan reports - network state established
	Greenbone Community Edition
	Tenable Nessus Professional
	Pentera Core
	jok3r

	Scan reports - network state advanced
	Greenbone Community Edition
	Tenable Nessus Professional
	Pentera Core
	jok3r



