
Accelerating FHE Operations on a Processing-in-Memory System

Beschleunigung von FHE-Operationen auf einem Processing-in-Memory
System

Bachelorarbeit

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Niklas Klinger

ausgegeben und betreut von
Prof. Dr. Thomas Eisenbarth

mit Unterstützung von
Jonas Sander

Lübeck, den 11. Dezember 2024

Abstract

Fully homomorphic encryption (FHE) is a promising technology for secure cloud com-
puting, as it allows computations directly on encrypted data. However, FHE is compu-
tationally expensive and often memory bound on conventional computer architectures.
Processing-in-Memory (PIM) is an alternative hardware architecture which integrates pro-
cessing units and memory on the same chip or memory module. PIM enables higher
memory bandwidth than conventional architectures and could thus be suitable for accel-
erating FHE. In this work, we test UPMEM’s programmable, general-purpose PIM system
and evaluate its suitability for accelerating FHE operations. We incorporate many optim-
isations, including residue number system and number-theoretic transform techniques
and achieve over 5× speed-up compared to previous work. Additionally, we benchmark
the runtime and energy efficiency of our implementation against Microsoft SEAL, a pop-
ular open-source FHE library. Our results show that the current version of UPMEM PIM
is unsuitable for accelerating FHE operations compared to other optimised implementa-
tions, because it is constrained by multiplication performance.

iii

Zusammenfassung

Vollständig homomorphe Verschlüsselung (engl. FHE) ist eine vielversprechende Tech-
nologie für sicheres Cloud Computing, da sie Berechnungen direkt auf verschlüsselten
Daten ermöglicht. FHE ist jedoch rechenintensiv und auf konventionellen Computer-
architekturen oft durch die Leistung des Speichers beschränkt. Processing-in-Memory
(PIM) ist eine alternative Hardwarearchitektur, die Recheneinheiten und Speicher auf
demselben Chip oder Speichermodul integriert. PIM ermöglicht eine höhere Speicherb-
andbreite als konventionelle Architekturen und könnte somit geeignet sein, um FHE zu
beschleunigen. In dieser Arbeit betrachten wir das programmierbare PIM-System von
UPMEM und evaluieren, ob es zur Beschleunigung von FHE-Operationen geeignet ist.
Wir verwenden viele Optimierungen, unter anderem Restklassendarstellungen und zah-
lentheoretische Transformationen (diskrete Fouriertransformationen über einem Ring),
wodurch wir eine 5× Beschleunigung im Vergleich zu früheren Arbeiten erreichen.
Außerdem vergleichen wir unsere Implementierung bezüglich Laufzeit und Energieef-
fizienz mit Microsoft SEAL, einer bekannten open-source FHE-Bibliothek. Unsere Ergeb-
nisse zeigen, dass die aktuelle Version von UPMEM PIM aufgrund ihrer begrenzten
Multiplikationsgeschwindigkeit nicht geeignet ist, um FHE-Operationen im Vergleich zu
anderen optimierten Implementierungen zu beschleunigen.

v

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Ben-
utzung der angegebenen Quellen und Hilfsmittel angefertigt zu haben.

Lübeck, 11. Dezember 2024

vii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Research Focus . 2
1.3 Related Work . 3

2 Background 5
2.1 Fully Homomorphic Encryption (FHE) . 5

2.1.1 Steps in an FHE Scheme . 5
2.2 The UPMEM Architecture . 6

2.2.1 Arithmetic Operations . 6
2.2.2 Threading and Pipeline . 7
2.2.3 Communication Between DPUs and Host 7

3 Testing the UPMEM System 9
3.1 Benchmarking Basic Arithmetic . 9
3.2 Basic Polynomial Operations . 10

3.2.1 Test Conditions . 10
3.2.2 128-Bit and 256-Bit Arithmetic . 11
3.2.3 Initial Results . 12
3.2.4 Optimisations . 14

4 Accelerating FHE 19
4.1 Number-Theoretic Transform (NTT) . 19

4.1.1 Concepts Required for NTT . 19
4.1.2 NTT Definitions . 21
4.1.3 Example . 22
4.1.4 Fast NTT Algorithms . 23

4.2 Residue Number System (RNS) . 26
4.2.1 Representation . 27
4.2.2 Modular Addition and Multiplication 27
4.2.3 Choice of Moduli . 27
4.2.4 Converting to and from RNS . 28

ix

Contents

4.3 Our Implementation . 28
4.3.1 RNS Representation of Polynomials 28
4.3.2 Splitting Polynomials Between DPUs 29
4.3.3 CPU-DPU Interface . 29
4.3.4 Multi-Threading . 30
4.3.5 Improvement over Previous Implementation 31

4.4 Performance Evaluation . 32
4.4.1 Comparing to Microsoft SEAL . 33
4.4.2 Initial Performance . 34
4.4.3 Optimisations . 34
4.4.4 Energy Efficiency . 40
4.4.5 Ciphertext Moduli . 41
4.4.6 Unsuitable Optimisations . 42

5 Conclusions 45
5.1 Summary . 45
5.2 Answering the Research Question . 46
5.3 Outlook . 46

References 47

x

1 Introduction

Data security is becoming increasingly important as more applications rely on cloud com-
puting. Especially in areas such as healthcare, where confidentiality and privacy of sensit-
ive data is critical. Homomorphic encryption (HE) allows computations to be performed
on encrypted data without decrypting it and without revealing any information about the
inputs and outputs of the computation apart from their lengths. The results can be decryp-
ted using the secret key corresponding to the original encrypted data. Because HE allows
computations directly on encrypted data, it can significantly enhance security in cloud
computing contexts. Using HE, even highly sensitive computations can be outsourced to
cloud providers or other third parties, because the data can stay encrypted throughout the
whole process. This is particularly relevant in healthcare, where the handling of sensitive
medical records and patient information must comply with strict data protection regu-
lations, such as the General Data Protection Regulation (GDPR) in the European Union.
HE could enable secure data analysis, research and healthcare services in the cloud, while
ensuring compliance with increasingly stringent privacy laws around the world.

To achieve confidentiality, current HE schemes rely on noise which is added to the en-
crypted data. When performing computations on this data, the noise compounds, which
poses a limit on how many operations can be performed, as too much noise makes the
results impossible to decrypt. Fully homomorphic encryption (FHE) solves this prob-
lem by introducing a special noise reducing operation called bootstrapping. This allows
arbitrary sequences of operations to be performed on the encrypted data, as long as boot-
strapping is performed at appropriate times. However, the main drawback of FHE is its
high memory- and computational-intensity compared to working directly on the unen-
crypted data. Bootstrapping operations are especially expensive and thus responsible for
the majority of the time required for typical computations on homomorphically encrypted
data.

Processing-in-Memory (PIM) is a hardware architecture which integrates processing units
and memory on the same chip or memory module. PIM enables low-latency, high-
bandwidth memory access compared to a traditional architecture, in which processing
units and memory are separated. PIM could thus be suitable for accelerating memory-
intensive applications like FHE, which we want to evaluate in this work.

1

1 Introduction

1.1 Motivation

Traditional computer architectures can become bottlenecked by memory accesses, which
means that some of their compute units have to stay idle, because they cannot receive
enough data to operate on. Memory bottlenecks often occur when performing FHE oper-
ations, which have comparatively low arithmetic intensity [dCAY+21], as they access a lot
of data, but only perform few operations on it, before requiring more data. Additionally,
some FHE operands, especially those required for bootstrapping, can be too large for the
caches of these traditional architectures, which further decreases their memory perform-
ance. To some extend, this can be remedied by ever bigger caches, wider memory buses
and higher memory frequencies to increase the bandwidth between memory and compute
units. However, this data movement has high energy costs and already accounts for more
than half of the total energy usage in many applications [BGK+18].

As an alternative approach, PIM architectures “bring memory and compute together”
and can thus achieve high bandwidths without the extensive memory systems of tra-
ditional architectures. UPMEM1, whose PIM architecture we will evaluate, claims sig-
nificant speed-ups and improved energy efficiency in many memory intensive applica-
tions [UPM23]. Their general-purpose architecture may thus also be suitable for acceler-
ating FHE operations by eliminating the memory bottleneck. However, the UPMEM PIM
system also presents challenges: The system is massively parallel, the processing units
are simple, comparatively weak, cannot easily communicate with each other, and their
memory is split and must be managed manually (see Section 2.2). We will have to address
these challenges when implementing FHE operations on the UPMEM PIM system.

1.2 Research Focus

We want to evaluate whether the UPMEM PIM system is suitable for accelerating FHE op-
erations. Specifically, we want to answer the following research question: Is the UPMEM
PIM system suitable for improving the throughput or energy efficiency of FHE operations
compared to other optimised implementations?

Since current FHE schemes operate on polynomial rings, we will focus on the perform-
ance of the UPMEM PIM system for polynomial additions, multiplications and modulus
operations. We will also evaluate how different parameters of the encryption schemes
and the corresponding properties of the ciphertexts affect the suitability of the UPMEM
PIM system for accelerating these operations. This includes the polynomial modulus and
thus the length of the ciphertexts (e.g. 1024, 4096, or more coefficients) and the ciphertext

1UPMEM Homepage: https://www.upmem.com/

2

https://www.upmem.com/

1.3 Related Work

moduli, i.e. the value range of the coefficients and specifically whether they fit into com-
mon word sizes (32-bit, 64-bit, etc.) and how these parameters can be adjusted to improve
performance.

1.3 Related Work

Many different ways of accelerating FHE operations have been explored, including CPU
optimisations using wide-register SIMD instruction sets like SSE and AVX for parallelisa-
tion, GPU implementations for even further parallelisation [BVL+21, JKA+21], and hard-
ware solutions such as FPGAs [PNPM15, CRS17] and ASICs. There has also been research
on the bottlenecks for further FHE optimisations, with the general conclusion being that
FHE is memory-bound [dCAY+21]. This paints a promising picture for accelerating FHE
using in- or near-memory computing systems like UPMEM PIM.
Previous work on accelerating FHE using PIM, like CryptoPIM [NGI+20] and MeNTT
[LPY22], has focused on custom hardware designs. We will instead evaluate FHE accel-
eration using a general-purpose PIM system and without designing custom circuits. A
team of researches at ETH Zürich has already published a short evaluation of HE opera-
tions on an UPMEM PIM system [GKG+23]. We want to build on this work, which to our
knowledge is currently the only paper on this subject.
Additionally, there are algorithmic and mathematical approaches for reducing the cost
of FHE operations or polynomial operations in general, like the (fast) number-theoretic
transform (NTT), which are used by many FHE implementations. We will implement
these as well, so that we can accurately compare the UPMEM PIM system with existing
FHE implementations.

3

2 Background

In this chapter, we go into more detail on FHE and the UPMEM architecture.

2.1 Fully Homomorphic Encryption (FHE)

Many current FHE schemes are based on the Learning With Errors (LWE) or Ring Learning
With Errors (RLWE) problem and use noisy polynomials as ciphertexts. RLWE based FHE
schemes like BFV [Bra12, FV12] and BGV [BGV14] operate on polynomial rings denoted
as Zq[x]/(x

n + 1), i.e. the ring of integer polynomials modulo the polynomial xn + 1 and
with coefficients modulo q (other rings are possible, but this is the most popular choice).
The two main operations on the ciphertexts, which are required for the scheme to be fully
homomorphic, require polynomial addition and polynomial multiplication. It may also
be required to perform polynomial modulus and coefficient modulus operations, to en-
sure that the ciphertexts stay within the relevant polynomial ring. Other operations like
bootstrapping can be separated into multiple of these basic operations.

2.1.1 Steps in an FHE Scheme

Usage of an FHE scheme can be logically split into the following steps:

1. Selecting encryption parameters
2. Key generation
3. Encrypting data
4. Computing on encrypted data
5. Decrypting results

In this work, we consider a scenario in which a client wants to offload computations to
an untrusted server (e.g. a cloud provider) using FHE. This means that key generation,
encryption and decryption are performed by the client, while the server handles computa-
tions on the encrypted data and potentially specifies encryption parameters that the client
should use. Our focus is the computation on encrypted data, which corresponds to the
server side of this interaction.

5

2 Background

2.2 The UPMEM Architecture

UPMEM PIM is a programmable near-memory computing architecture (as opposed to
in-memory computing), in which simple, general-purpose processors, called Data Pro-
cessing Units (DPUs), are co-located with DRAM chips on special memory modules (PIM
DIMMs). The DPUs are custom 32-bit RISC processors running at up to 400 MHz. They
support 16 independent threads2 and up to 11 of these threads can run concurrently at any
given time (see Section 2.2.2). Each PIM DIMM has a capacity of 8 GB and contains 128
DPUs, with each DPU having access to a 64 MB slice of the module’s main RAM (MRAM).
However, DPUs can only directly compute on an additional, smaller memory, called the
working memory (WRAM), of which each DPU has 64 KB. Special direct memory access
(DMA) instructions are used to transfer data between the WRAM and MRAM of a DPU.
Current UPMEM platforms support up to 20 PIM DIMMs, for a total of 2560 DPUs and a
capacity of 160 GB.

2.2.1 Arithmetic Operations

UPMEM DPUs have a native word size of 32-bit and can perform simple operations like
addition, subtraction and bitwise manipulation (and, or, not, shifts, etc.) of 32-bit integers
with single instructions. Using instructions like add-with-carry, these operations can also
easily be performed on bigger integers. However, the DPU hardware does not directly
support 32x32-bit or even 16x16-bit integer multiplications. The hardware multiplier can
only perform 8x8-bit (byte) multiplications, which yield 16-bit results. The DPU compiler
implements 16x16-bit and 64x64-bit multiplications by chaining together many of these
byte multiplications and appropriately shifting and adding the intermediate results. For
32x32-bit multiplication, the compiler uses mul_step instructions instead, which works
as follows: Consider the calculation ofA·B, where the result is initially zero. IfA’s n-th bit
is set, then 2n ·B is added to the result. This step is repeated for all n ∈ {0, . . . , 31}, which
takes one cycle each. As an optimisation, A is always set to the smaller of the two factors
and the algorithm stops as soon as all remaining (upper) bits of A are zero. Integer divi-
sion and modulo operations are implemented similarly, using div_step instructions for
operands up to 32-bit and a software implementation for 64-bit operands. The DPUs do
not have hardware supported floating point operations; they are implemented in software
instead, which results in poor performance. As such, floating point operations should be
avoided for most applications.

2These capabilities refer to the v1B DPU model. UPMEM also provides a v1A model with slight
differences. (See https://sdk.upmem.com/2024.1.0/03_ProgrammingWithUpmemDpu.html#
dpu-chip-characteristics)

6

https://sdk.upmem.com/2024.1.0/03_ProgrammingWithUpmemDpu.html#dpu-chip-characteristics
https://sdk.upmem.com/2024.1.0/03_ProgrammingWithUpmemDpu.html#dpu-chip-characteristics

2.2 The UPMEM Architecture

2.2.2 Threading and Pipeline

DPUs feature a 14-stage pipeline, but the three first and last stages of dependent instruc-
tions can execute in parallel [GHF+21]. Thus, only 11 active threads are needed to fully
saturate the pipeline. Active threads are scheduled in a round-robin way and threads
generally stay active3 unless they are explicitly waiting (e.g. on a mutex) or performing
a DMA operation. These DMA operations execute sequentially and threads waiting on a
DMA operation are placed in a special queue. This means that only one thread of each
DPU can access the MRAM at a time.

2.2.3 Communication Between DPUs and Host

DPUs can communicate with the host CPU via the DDR interface. Inter-DPU communic-
ation is not possible directly and must go through the host CPU instead, meaning that
the data must first be copied from one DPU to the CPU’s main memory and then copied
from the main memory to another DPU. This process is slow, as it requires synchronisa-
tion between all three components. Thus, inter-DPU communication should be avoided
whenever possible.
As with normal DRAM modules (DIMMs), the memory chips on PIM DIMMs are organ-
ised into ranks and banks, interleaving multiple 8-bit wide chips to achieve a total bus
width of 64-bit. Logically consecutive bytes are thus actually stored in different memory
chips belonging to different DPUs, as shown in Figure 2.1. Transferring continuous data
between DPUs and the host CPU therefore requires a transposition step. The UPMEM
SDK performs this automatically when using the provided data transfer functions.

3Threads can also be stopped using a special stop instruction.

7

2 Background

A0 B0

C0

DPU 0

DRAM-Chip 0

A1 B1

C1

DPU 1

A2 B2

C2

DPU 2

A3 B3

C3

DPU 3

A4 B4

C4

DPU 4

A5 B5

C5

DPU 5

A6 B6

C6

DPU 6

A7 B7

C7

DPU 7

Physical Memory Layout

DRAM-Chip 1 DRAM-Chip 2 DRAM-Chip 3

DRAM-Chip 4 DRAM-Chip 5 DRAM-Chip 6 DRAM-Chip 7

0 A0 A1 A2 A3 A4 A5 A6 A7 7

8 B0 B1 B2 B3 B4 B5 B6 B7 15

16 C0 C1 C2 C3 C4 C5 C6 C7 23

Logical Memory Layout

Figure 2.1: Schematic representation of the physical memory layout on memory modules
with interleaved DRAM-chips. In this example, the logically consecutive 8-
byte word A is physically split over 8 DRAM-chips. Thus, every DPU can only
access a small part of A, unless the data is first transposed. The same is true for
B and C.

8

3 Testing the UPMEM System

In this chapter, we familiarise ourselves with the UPMEM system by performing first
benchmarks and implementing basic polynomial operations.

3.1 Benchmarking Basic Arithmetic

As a starting point, we conduct benchmarks to determine the time (number of cycles)
required to perform basic arithmetic operations (addition and multiplication) on integers
of different widths4. We test with a fully utilised pipeline (at least 11 active threads). Note
that when using a single thread, the number of cycles required for these operations is
11-times higher. The benchmark results are averaged over 16000 executions and the test
overhead (e.g. loop counting) is measured separately and subtracted from the results.
This allows us to accurately measure the runtime of the tested operations. The results are
shown in Figure 3.1. Note that the runtime of 32-bit multiplication depends on the value
(significant bit count) of the factors (see Section 2.2.1) and the result shown here is for a
worst-case scenario of 32-bit factors. Smaller factors reduce the runtime by one cycle per
unset significant bit. For example, 27-bit factors only require 38 cycles.

Most of these results are identical to the number of instructions generated for the opera-
tions, meaning that all tested instructions take the same amount of time to execute. This
is expected from the DPUs’ RISC architecture, which is highly parallel, but whose execu-
tion of each thread is relatively simple. The Instruction Set Architecture Manual5 states
that “the apparent latency of any instruction is always one cycle” due to the revolving
pipeline design and suspension of threads performing DMA operations, which take mul-
tiple cycles. The runtime of non-DMA operations can thus be very accurately predicted
by analysing the number of instructions that would be executed. This technique perfectly
matches the benchmark results for 8x8-bit, 16x16-bit and 32x32-bit multiplication, with
only the 64x64-bit multiplication taking a few cycles longer than expected. This is be-
cause of too many accesses to the register file, which the manual calls out as a special
circumstance, in which an instruction has to be replayed, requiring one additional cycle.
However, this register file access limitation rarely affects normal code and the instruction

4This time includes the compiler generated function calls for multiplications larger than 16-bit.
5UPMEM Instruction Set Architecture Manual: https://sdk.upmem.com/2024.1.0/201_IS.html#
efficient-scheduling

9

https://sdk.upmem.com/2024.1.0/201_IS.html#efficient-scheduling
https://sdk.upmem.com/2024.1.0/201_IS.html#efficient-scheduling

3 Testing the UPMEM System

add32 add64 mul8 mul16 mul32 mul64
Operation

0

32

64

96

128

C
yc

le
s

re
qu

ir
ed

1 2 1 7

43

134

Figure 3.1: DPU benchmark results for basic arithmetic operations on integers of different
widths.

count analysis can be very useful for optimising code and quickly comparing different
implementations.

3.2 Basic Polynomial Operations

We could not reproduce the results from researches at ETH Zürich [GKG+23], as some
test conditions are unclear to us and our own results are either too slow or too fast. We
will instead conduct our own benchmarks of basic polynomial operations on DPUs, by
starting with a basic implementation and then exploring possible optimisations.

3.2.1 Test Conditions

We test modular additions and modular element-wise multiplications on different num-
bers of polynomials. These polynomials have 4096 coefficients with 109 bits each, which
are typical parameters for the BFV and BGV schemes.

Level of Optimisation

We start with an unoptimised implementation, which uses a naive modular reduction and
only loads the data from MRAM which it immediately needs. This means that each thread
only buffers the two 128-bit integers (one coefficient per polynomial) which it is currently
adding or multiplying. We use the Karatsuba algorithm for the multiplying these 128-bit
numbers. We do not use number-theoretic transform (NTT) or residue number system
(RNS) techniques.

10

3.2 Basic Polynomial Operations

Multi-Threading

We use coarse-grained multi-threading, in which each thread operates on its own poly-
nomials independently from other threads (as opposed to fine-grained multi-threading,
in which multiple threads simultaneously operate on the same polynomials). With this
coarse-grained multi-threading, the number of possible concurrent threads depends on
the number of polynomials being processed.

For example, with 8 polynomials to be multiplied (4 pairs of 2), only 4 polynomial op-
erations have to be performed and since every thread independently performs such an
operation as a whole, only 4 concurrent threads can be utilised. Because DPUs can run up
to 11 threads concurrently, they would thus be underutilised when having fewer than 22
polynomials to operate on.

3.2.2 128-Bit and 256-Bit Arithmetic

Since the UPMEM compiler only supports integers up to 64-bit, we have to manually
implement the required 128-bit arithmetic. We represent a 128-bit integer as a pair of 64-
bit integers — the low part and the high part. In our initial C implementation, addition is
performed separately on these parts and the high part is additionally incremented by one,
when the low part overflows. Subtraction is implemented similarly. In comparisons, the
high parts are compared first and the low parts are compared only if the high parts are
equal. The modular reduction after an addition is implemented by comparing the sum
with the modulus, which is then conditionally subtracted. For modular subtraction, the
minuend and subtrahend are compared, to conditionally add the modulus.

We implement 128-bit multiplication with the Karatsuba algorithm using 32-bit multiplic-
ation as the base. This yields a 256-bit result, which we represent as four 64-bit integers.
Basic 256-bit operations are implemented similarly to the 128-bit operations described
above. However, we also require modular reduction back to a 128-bit result.

We implement a naive modular reduction using a basic division algorithm: First, the di-
visor is scaled up (left-shifted) until it has the same bit-length as the dividend. Second,
if the scaled-up divisor is less-than-or-equal to the dividend, it is subtracted from the di-
vidend. Third, the divisor is right-shifted once and the algorithm repeats from the second
step, until the divisor is back at its initial size. The dividend is thus sequentially reduced
by 2l ·m, 2l−1 ·m, . . . , 22 ·m, 21 ·m and finally 20 ·m = m, where m is the divisor/modulus
and l is the initial size difference (in bits) between dividend and divisor. Thus, the initial
dividend gets reduced modulo m.

Figure 3.2 shows the runtime of these operations compared to operations on native 32-bit
and 64-bit integers.

11

3 Testing the UPMEM System

subtraction
addition

modular sub. (avg.)

modular add. (avg.)
0

10

20

30

C
yc

le
s

re
qu

ir
ed

1 1
3.5 4.5

2 2

6.5
8.5

16 17

26.5 27.5

32-bit
64-bit
128-bit

multiplication
0

500

1000

1500

43
134

1442

Figure 3.2: Runtimes of 128-bit operations (initial implementation) compared to opera-
tions on native 32-bit and 64-bit integers. The modular subtraction and mod-
ular addition results are averaged between the case in which a reduction is
necessary and the case in which it is not. The runtime of 32-bit multiplication
depends on the value of the factors (see Section 3.1).

3.2.3 Initial Results

We test our implementation of modular addition and modular element-wise multiplica-
tion on random polynomials with 4096 109-bit coefficients. We use coarse-grained multi-
threading and each thread only buffers the two coefficients which it is immediately op-
erating on. The tests are run on an UPMEM cloud machine with 2220 DPUs and the
polynomials are split as evenly as possible between all DPUs.
We separately measure the following times:

• Time required for transferring the test data to the DPUs.
• Time required for computations on the DPUs (measured both by the host and a cycle

counter on the DPUs).
• Time required for retrieving the results from the DPUs.
• Total time required.

We do not measure initialisation steps (like allocating DPUs or generating random test
data) and they are not included in the total time measurement.

Modular Polynomial Addition

Figure 3.3 shows the results of testing modular polynomial addition on different numbers
of polynomials. Most of the time is spent transferring data, while the actual computations

12

3.2 Basic Polynomial Operations

20480 40960 81920 163840 327680
Number of polynomials

0

1000

2000

3000

Ti
m

e
(m

s)

8 15 32 60 118103 153
355

659

1369

89 154
416

783

1840

202 324

805

1503

3328Computation
Data transfer
Data retrieval
Total

Figure 3.3: DPU benchmark results for modular polynomial addition on different num-
bers of polynomials with 4096 109-bit coefficients (initial implementation).

only take tens of milliseconds. Note that the data transfer overhead being larger than the
computation time is expected for the isolated addition operations in this microbenchmark
and does not imply that the UPMEM system is unsuitable for accelerating HE operations.
In a real HE use-case, multiple operations would be performed on the data, including
more complex operations like multiplication, thus amortising the transfer cost.

Modular Element-Wise Multiplication

Figure 3.4 shows the results of testing modular element-wise multiplication on different
numbers of polynomials. Compared to the modular polynomial addition tests, the com-
putation times are much higher and make up the majority of the total time measurements
in these tests. We can also see that the computation times are the same for the test cases
with up to 40960 polynomials. This is expected due to the coarse-grained threading model
and potential underutilisation of DPUs described above. With 2220 DPUs, each DPU has
to process the following number of polynomials (rounded):

• For 5120 total polynomials: 2.3
• For 10240 total polynomials: 4.6
• For 20480 total polynomials: 9.2
• For 40960 total polynomials: 18.5
• For 81920 total polynomials: 36.9

We expect DPUs to be underutilised when having fewer than 22 polynomials to operate
on and the benchmark results reflect this.

13

3 Testing the UPMEM System

5120 10240 20480 40960 81920
Number of polynomials

0

1000

2000

3000

4000
Ti

m
e

(m
s)

1125 1126 1126 1126

2758

26 57 110 192 363
21 41 99 174

381

1174 1226 1337 1493

3504Computation
Data transfer
Data retrieval
Total

Figure 3.4: DPU benchmark results for modular element-wise multiplication on different
numbers of polynomials with 4096 109-bit coefficients (initial implementation).

3.2.4 Optimisations

We optimise the 128-bit arithmetic and polynomial operations. Figure 3.5 visualises the
time reduction of these optimisations and Figure 3.6 shows their effect on the modular
polynomial addition and modular element-wise multiplication tests.

Buffering MRAM Accesses

We reduce the overhead associated with MRAM accesses by increasing the access size. In-
stead of always fetching only the current coefficient, we buffer some additional coefficients
in WRAM, which we will need later on, thus decreasing the frequency and contention of
MRAM accesses.
For our optimised implementation, we give each thread up to 512 bytes of buffer space
(larger buffers would overflow the stack). The result is a time reduction between 48% and
74% in the modular polynomial addition tests (depending on the number of polynomi-
als), but only about 0.15% in the modular element-wise multiplication tests. This shows
that the modular addition tests are constrained by memory accesses, while the modular
multiplication tests are mostly constrained by computational performance.

Addition and Subtraction

Our initial implementation performs 128-bit addition by adding the 64-bit high and low
parts separately, checking the low part for overflow (the sum being less than one of the
inputs) and then conditionally incrementing the high part by one. Subtraction is imple-

14

3.2 Basic Polynomial Operations

mented similarly. However, this takes up to three operations (addition, comparison, in-
crementing), when a single carry-aware operation could achieve the same result. This is
because C does not provide a standard way of accessing the carry-out of an operation and
inputting it into the next one.

We have thus created an optimised implementation, which uses the DPUs’ addc and
subc instructions via inline assembly, reducing the time required for addition and sub-
traction to just 10 cycles each. This corresponds to a 41.2% time reduction for addition,
a 37.5% time reduction for subtraction and a 27.3% / 24.5% time reduction for modular
addition and modular subtraction respectively. However, this only translates to an addi-
tional time reduction between 5.6% and 1.2% in the modular polynomial addition tests, as
they are still constrained by memory accesses.

These optimisations also improve the runtime of modular multiplication, because its
division-based modular reduction step benefits from faster base operations (addition and
subtraction). The time reduction for modular multiplication is about 10%, which also
translates into a ~10% time reduction in the modular element-wise multiplication tests, as
they are constrained by computational performance.

Coalescing Comparison and Subtraction

We have previously described a simple modular subtraction, which compares the minu-
end and subtrahend, to then conditionally add the modulus to their difference. This oper-
ation can be optimised by coalescing the comparison and the subtraction. We can achieve
this by checking the processor flags (e.g. the carry or zero flag) after the subtraction. This
is also how comparisons are usually implemented in hardware, so our initial implement-
ation essentially performs two subtractions (one comparison and one “normal” subtrac-
tion), when one could suffice. Our optimised implementation, which coalesces compar-
ison and subtraction using inline assembly, achieves an additional 25% time reduction for
modular subtraction. While the modular polynomial addition and modular element-wise
multiplication tests do not utilise this operation, other operations like modular polyno-
mial subtraction or NTT (see next chapter) can benefit from this type of optimisation.

Summary and Further Optimisations

With these relatively simple optimisations, we have achieved a total time reduction of
~70% in the modular polynomial addition tests and ~10% in the modular element-wise
multiplication tests. Notice that the modular polynomial addition mostly benefits from
the optimised buffering, while the modular element-wise multiplication mostly benefits
from the computational improvements, which is in-line with our previous observations.

15

3 Testing the UPMEM System

subtraction
addition

modular sub. (avg.)

modular add. (avg.)
0

10

20

30

40

50

C
yc

le
s

re
qu

ir
ed

16 17

26.5 27.5

10 10

20 20
15

Initial implementation
Optimised add. & sub.
. . . + coalesced comparison

modular mul. (*)
0

2000

4000

6000

8000
8470

7613

Figure 3.5: Performance comparison between initial and optimised DPU implementations
of operations on 128-bit integers. The modular subtraction and modular ad-
dition results are averaged between the case in which a reduction is necessary
and the case in which it is not. Because the runtime of the modular multiplica-
tion (*) is dependent on its operands, our comparison uses a fixed set of inputs.
However, different inputs might produce different results for this operation.

However, modular element-wise multiplication remains slow and modular polynomial
multiplication takes over an hour to complete (not shown here). There are some known
methods which we could apply to optimise these 128-bit modular multiplications. For
example, we could implement Barrett reduction instead of our naive modular reduction
based on division. We could also apply number-theoretic transform (NTT) techniques
to drastically reduce the runtime of modular polynomial multiplication, as NTT allows
computing this operation in O(n log n) steps, instead of O(n2).
However, even with these optimisations, we would still be computing on 128-bit and 256-
bit values, which as we have seen, is much slower than 32-bit or 64-bit arithmetic on DPUs
(see Figure 3.2 and Figure 3.5). To improve performance on these large coefficients, we can
instead represent them using a residue number system (RNS). This decomposes a number
into residues, which are the remainders when dividing by a set of moduli. If we choose
moduli which are 32-bit or smaller, we can then compute on values of the DPUs native
word size, which is faster.
In the following chapter, we will use this technique to improve performance and will thus
focus on 32-bit and 64-bit arithmetic. We will also apply the aforementioned optimisations
like NTT on these smaller word sizes, instead of implementing them for large coefficients
directly.

16

3.2 Basic Polynomial Operations

20480 40960 81920 163840 327680
Number of polynomials

0

50

100

C
om

pu
ta

ti
on

ti
m

e
(m

s)

8.6 14

32

60

118

4.5 4.6 11
17

31

4.2 4.3 10
17

30

Modular Polynomial Addition Tests

Initial implementation
MRAM buffering
. . . + optimised add. & sub.

20480 40960 81920
Number of polynomials

0

1500

3000

C
om

p.
ti

m
e

(m
s)

1125 1125

2758

1123 1123

2755

1003 1003

2461

Modular Element-Wise Multiplication Tests

Figure 3.6: Performance comparison between initial and optimised DPU implementations
of modular operations on polynomials with 4096 109-bit coefficients. For mod-
ular element-wise multiplication, not all test cases are shown, because the test
cases up to 40960 polynomials have identical results.

17

4 Accelerating FHE

We implement the number-theoretic transform (NTT) and leverage residue number sys-
tems (RNS) to accelerate polynomial operations on DPUs. We test and evaluate our imple-
mentation and compare it to Microsoft SEAL’s [SEA23] optimised CPU implementation
regarding both runtime and energy efficiency.

4.1 Number-Theoretic Transform (NTT)

The NTT is a generalisation of the discrete Fourier transform (DFT) to a finite field, like
integers modulo a prime q. Fourier transforms take in vectors of numbers (e.g. polyno-
mial coefficients) and output same size vectors, which can be thought of as evaluations
of the input polynomial at specific points, called roots of unity. While roots of unity are
easy to compute for DFTs, which operate on complex numbers, they are harder to find in
finite fields and are often pre-computed or hard-coded for NTT. These Fourier transforms
of polynomials are useful, because polynomial multiplications (and additions) can then
be performed pointwise, i.e. in linear time. Since NTT, as well as its inverse (iNTT), can be
applied in O(n log n) time, for example using the Cooley-Tukey algorithm, the total time
required for polynomial multiplication using NTT is also in O(n log n). By comparison, a
naive implementation would take O(n2) time and even optimised implementations like
the Karatsuba algorithm with O(nlog2 3) time complexity are asymptotically slower than
NTT-based multiplication. Performance can be improved further by storing the polyno-
mials in their NTT-form and performing multiple operations on them, before inverting the
transform only as the last step of a computation. However, some operations require the
coefficient form (i.e. the non-transformed representation), which can make it necessary to
perform multiple transformations as part of a computation.

4.1.1 Concepts Required for NTT

We define primitive roots of unity, describe working moduli and briefly explain the dif-
ference between positive-wrapped and negative-wrapped convolutions relevant to NTT.

19

4 Accelerating FHE

Primitive n-th Root of Unity

Definition 4.1 (Primitive n-th root of unity). Let Zq be an integer ring modulo q and let
n ∈ N+ be a positive integer. Then ω ∈ Zq is a primitive n-th root of unity in Zq if and only
if

ωn ≡ 1 mod q

and
ωk ̸≡ 1 mod q

for all k < n, k ∈ N+.

For a primitive n-th root of unity ω ∈ Zq, it follows that ωkn+i = (ωn)kωi ≡ ωi mod q for
all k, i ∈ N0. And for a primitive 2n-th root of unity ψ ∈ Zq (i.e. ψ2n = (ψn)2 ≡ 1 mod q),
it additionally follows that ψn ≡ −1 mod q.

Working Modulus

For our purposes, NTT operates on integers modulo a prime q. We require the resulting
ring Zq to contain specific primitive roots of unity, dependent on the length of the input.
Additionally, our prime q should be larger than all input values, so that they can be un-
ambiguously represented in Zq. If operations on the transformed data must not overflow
(i.e. be reduced modulo q), then q must also be larger than all expected results.
To meet these requirements, q should be a prime larger than all inputs (and expected
results), which satisfies q = 2nk+1 for some positive integer k ∈ N+, where n is the length
of the input. Because q is prime, the multiplicative group Zq must have a generator and
Euler’s theorem guarantees that it also has a primitive 2n-th root of unity. A modulus q
which meets these requirements is known as a working modulus. It is one of the parameters
of an NTT.

Positive- and Negative-Wrapped Convolutions

Mathematically, the multiplication of two polynomials can also be described as a convo-
lution of their coefficient vectors. But what if the resulting vector is too large, for example
because we are working in Zq[x]/(x

4+1) for some q, but the resulting polynomial contains
x4 and x5 terms?
In this case, we differentiate between positive-wrapped and negative-wrapped convolutions.
Both can be computed with NTT, but they require different implementations. A positive-
wrapped (or cyclic) convolution can be thought of as operating modulo xn − 1 (or in this
case x4−1), while a negative-wrapped (or negacyclic) convolution operates modulo xn+1.

20

4.1 Number-Theoretic Transform (NTT)

4.1.2 NTT Definitions

Note that in the following definitions, all operations are performed in their respective
integer ring Zq, for example n−1 refers to the inverse of n in Zq.

Positive-Wrapped Transform

Definition 4.2 (NTT+). Let c ∈ Zn
q be a vector (of coefficients) with length n and let ω be

a primitive n-th root of unity in Zq. The positive-wrapped number-theoretic transform
(NTT+) of c with parameters (q, ω) is a vector t ∈ Zn

q , where

ti =
n−1∑
j=0

ωijcj mod q

for i = 0, 1, . . . , n− 1.

Definition 4.3 (iNTT+). Let t ∈ Zn
q be a vector with length n and let ω be a primitive n-th

root of unity in Zq. The inverse positive-wrapped number-theoretic transform (iNTT+) of
t with parameters (q, ω) is a vector c ∈ Zn

q , where

ci = n−1
n−1∑
j=0

ω−ijtj mod q

for i = 0, 1, . . . , n− 1.

Note that the inverse transform of a transform with the same parameters (q, ω) is always
the original input, i.e. iNTT+(NTT+(c)) = c for all c ∈ Zn

q . The same holds for the
following negative-wrapped transform (NTT−) and its inverse (iNTT−) if they use the
same parameters (q, ψ).

Negative-Wrapped Transform

Definition 4.4 (NTT−). Let c ∈ Zn
q be a vector (of coefficients) with length n and let ψ be

a primitive 2n-th root of unity in Zq. The negative-wrapped number-theoretic transform
(NTT− or just NTT) of c with parameters (q, ψ) is a vector t ∈ Zn

q , where

ti =
n−1∑
j=0

ψ2ij+jcj mod q

for i = 0, 1, . . . , n− 1.

21

4 Accelerating FHE

Definition 4.5 (iNTT−). Let t ∈ Zn
q be a vector with length n and let ψ be a primitive 2n-

th root of unity in Zq. The inverse negative-wrapped number-theoretic transform (iNTT−

or just iNTT) of t with parameters (q, ψ) is a vector c ∈ Zn
q , where

ci = n−1
n−1∑
j=0

ψ−2ij−itj mod q

for i = 0, 1, . . . , n− 1.

Since HE usually uses the negative-wrapped transform (NTT− and iNTT−), we will also
refer to it simply as NTT and iNTT.

4.1.3 Example

Consider two polynomials A and B from the polynomial ring Z41[x]/(x
4 + 1), which we

want to multiply:

A(x) = 1 + 2x+ 3x2 + 4x3

B(x) = 3 + 1x+ 4x2 + 1x3

Naively, we could calculate:

A(x) ·B(x) = 1(3 + 1x+ 4x2 + 1x3) + 2x(3 + 1x+ 4x2 + 1x3)

+ 3x2(3 + 1x+ 4x2 + 1x3) + 4x3(3 + 1x+ 4x2 + 1x3)

= 3 + 7x+ 15x2 + 24x3 + 18x4 + 19x5 + 4x6

≡ −15 +−12x+ 11x2 + 24x3 mod x4 + 1

≡ 26 + 29x+ 11x2 + 24x3 mod 41

But this has quadratic complexity, because every coefficient of A must be multiplied with
every coefficient of B. If we instead perform an NTT on A and B with parameters q = 41

and ψ = 3:

TA = NTT−(A) = (19, 40, 37, 31)

TB = NTT−(B) = (28, 38, 9, 19)

These vectors can then be multiplied pointwise:

TAB = TA ◦ TB mod q = (532, 1520, 333, 589) mod q = (40, 3, 5, 15)

22

4.1 Number-Theoretic Transform (NTT)

And we can finally perform an inverse NTT:

AB = iNTT−(TAB) = (26, 29, 11, 24)

To get the correct result. Of course the NTT itself still has quadratic complexity if imple-
mented naively based on the definition, but fast NTT implementations like the Cooley-
Tukey algorithm can perform an NTT or inverse NTT in O(n log n) time. The full mul-
tiplication then takes three O(n log n) transforms and one O(n) pointwise multiplication
for a total time complexity of O(n log n).

4.1.4 Fast NTT Algorithms

NTT is a generalisation of the DFT and many fast DFT algorithms can also be generalised
to work with it. This includes the fast Fourier transform by Cooley-Tukey [CT65] and
many of its variations.

In the following, we will show how these can be applied to NTT. We will focus on the
radix-2 case, which recursively splits a length n NTT into two smaller NTTs of length n/2.
The base case is n = 1, since the NTT of a single element is just the identity function. We
will also assume that n is always a power of two, as is typical for HE.

Similarly, an iNTT of length n can also be decomposed into two smaller iNTTs of length
n/2, which we will not show here.

Cooley-Tukey NTT

Starting with Definition 4.4 (NTT−):

ti =

n−1∑
j=0

ψ2ij+jcj mod q

We can split the sum into even indices (2j) and odd indices (2j + 1):

ti =

n/2−1∑
j=0

ψ2i(2j)+2jc2j

+

n/2−1∑
j=0

ψ2i(2j+1)+2j+1c2j+1 mod q

23

4 Accelerating FHE

If we carry out the multiplications, we can extract the common factor ψ2i+1 from the
second sum:

ti =

n/2−1∑
j=0

ψ4ij+2jc2j +

n/2−1∑
j=0

ψ4ij+2j+(2i+1)c2j+1 mod q (4.1)

=

n/2−1∑
j=0

ψ4ij+2jc2j + ψ2i+1

n/2−1∑
j=0

ψ4ij+2jc2j+1 mod q (4.2)

With the common factor extracted, we can see that the two sums are almost identical,
except that the first sum operates on the even inputs (c2j) and the second sum operates on
the odd inputs (c2j+1). We can also see that the sums match the NTT definition for length
n/2 and a primitive n-th root of unity ψ′ = ψ2, which suggests that we can decompose a
length n NTT into two smaller NTTs of length n/2. The master theorem tells us that this
would achieve a runtime of O(n log n).

However, as the equation currently stands, this does not work, because these smaller NTTs
only produce n/2 values, but we need results for i = 0, 1, . . . , n − 1. Thus, we still need a
way to compute the upper n/2 values. Replacing i with i+ n/2 yields:

ti+n/2 =

n/2−1∑
j=0

ψ4(i+n/2)j+2jc2j + ψ2(i+n/2)+1

n/2−1∑
j=0

ψ4(i+n/2)j+2jc2j+1 mod q

=

n/2−1∑
j=0

ψ2njψ4ij+2jc2j + ψnψ2i+1

n/2−1∑
j=0

ψ2njψ4ij+2jc2j+1 mod q

Notice that we were able to extract the “+n/2”-part into the factors ψ2nj and ψn.

Recalling that ψ2nj ≡ 1 mod q and ψn ≡ −1 mod q (as ψ is a primitive 2n-th root of unity
in Zq), we can simplify as follows:

ti+n/2 =

n/2−1∑
j=0

ψ4ij+2jc2j − ψ2i+1

n/2−1∑
j=0

ψ4ij+2jc2j+1 mod q (4.3)

Which produces an equation for the upper n/2 results, which is very similar to Equa-
tion 4.2 and depends on the same smaller NTTs. The only difference is that the second
sum gets subtracted instead of added.

If we denote the sum over the even coefficients as Ei =
∑n/2−1

j=0 ψ4ij+2jc2j and the sum

over the odd coefficients as Oi =
∑n/2−1

j=0 ψ4ij+2jc2j+1, we can combine Equation 4.2 and

24

4.1 Number-Theoretic Transform (NTT)

Equation 4.3, to compute ti as:

ti = Ei + ψ2i+1Oi mod q

ti+n/2 = Ei − ψ2i+1Oi mod q
for i = 0, 1, . . . , n/2− 1

or equivalently:

ti =

Ei + ψ2i+1Oi mod q if i < n/2

Ei−n/2 − ψ2i−n+1Oi−n/2 mod q if i ≥ n/2
for i = 0, 1, . . . , n− 1

where Ei and Oi can be obtained by two smaller NTTs of length n/2.
This computation is often referred to as a butterfly and visualised as follows:

Ei

Oi

+

−ψ2i+1

ti

ti+n/2

Figure 4.1: Visualisation of a butterfly operation in a basic Cooley-Tukey NTT. The inter-
mediate result Oi is multiplied by ψ2i+1 and then added to / subtracted from
the intermediate result Ei to produce the respective outputs ti and ti+n/2.

Iterative Operation

Above, the Cooley-Tukey NTT is described recursively. However, it can also be imple-
mented iteratively, which is often preferred. In this case, the (sub-)NTTs are grouped by
their length (which corresponds to their recursive depth) and computed group by group.
For example, all length 2 NTTs are computed first, then all length 4 NTTs, all length 8
NTTs, etc. This results in log2(n) passes over the data, which are also known as stages.

In-Place Operation and Bit Reversal

The basic idea described above can be directly implemented using O(n) auxiliary storage,
but an in-place implementation is slightly harder. To illustrate the problem, consider a fast
NTT, as first described, with length n = 32. For in-place operation, the inputs and outputs
overlap, so inputE0 (the first even element) is in the same place as output t0, inputO0 (the
first odd element) is in the same place as output t1, etc. We can fetchE0 andO0 to compute
t0 = E0+ψ

1O0 mod q and t16 = E0−ψ1O0 mod q. Storing output t0 overwrites inputE0,
which is unproblematic, because E0 has already been used. However, storing output t16

25

4 Accelerating FHE

overwrites input E8 before it was read, which will produce incorrect results. In general,
performing a butterfly on inputs Ei and Oi, which are continuous in memory, produces
results ti and ti+n/2, which are in opposite halves of the output. The same problem occurs
during the computation of Ei, Oi and their recursively smaller NTTs.

One solution is to always store the butterfly results back into the input positions. This
changes each NTT’s output, but in a predictable way, which is equivalent to rotating the
index bits of the output elements by one. This is because elements which were supposed
to be in opposite halves of the output (i.e. differ in the most significant bit of their index),
are next to each other instead (i.e. differ in the least significant bit of their index).

Over all log2(n) stages, the result is a full bit reversal of the elements’ positions. This can
be offset by explicitly performing another bit reversal, to restore the normal element order.
However, for some operations, like NTT-based multiplication (convolution) as in HE, the
order of elements is not actually important. Thus, as an additional optimisation, we can
skip this second bit reversal and instead directly operate on the data in bit-reversed order.

Twiddle Factors

The butterfly shown in Figure 4.1 operates on intermediate results and powers of the
root of unity ψ. These root-of-unity-powers can be seen as an auxiliary input to the al-
gorithm. They are often pre-computed and additionally modified for the specific imple-
mentation (e.g. stored in bit-reversed order or pre-multiplied by a scaling factor). These
pre-computed, modified powers of the root of unity ψ are called twiddle factors.

4.2 Residue Number System (RNS)

In computing, numbers are usually represented in a weighted binary system, with larger
numbers requiring more bits. Such a system has a single base (the number 2) and the
weight of each digit (bit) is determined by its position, i.e. the digits have weight 20, 21,
22 and so forth. The weighted binary system has a lot of advantages, but can become
inefficient when multiplying large numbers. Naively, multiplying two numbers of length
n requires O(n2) operations. Karatsuba multiplication can reduce this to O(nlog2 3) oper-
ations, but this is still exponential with respect to n. However, if we represent numbers
in a residue number system (RNS) instead, modular multiplication and addition of large
numbers only requires linear time. But this representation also has downsides. For ex-
ample, general division is more complicated in an RNS representation, than in a weighted
binary representation.

26

4.2 Residue Number System (RNS)

4.2.1 Representation

RNS uses a set of bases (or moduli) m = (m1,m2, . . .mn) which are pairwise coprime.
A number is then represented by its residues modulo these bases (the remainders when
dividing by these moduli). For example, using RNS with bases m = (3, 5, 7), the number
x = 22 would be represented as:

x = (22 mod 3, 22 mod 5, 22 mod 7) = (1, 2, 1)

The set of bases m is also called the (RNS) base. The product of these bases is known as
M = m1 ·m2 · . . . ·mn and an RNS can only (uniquely) represent integers from 0 to M − 1.

4.2.2 Modular Addition and Multiplication

In RNS representation, two numbers can be added by simply adding their corresponding
residues modulo their base. For example, with bases m = (3, 5, 7), we can add x = 22 =

(1, 2, 1) and y = 79 = (1, 4, 2) modulo M = 3 · 5 · 7 = 105 as follows:

x+ y = (1, 2, 1) + (1, 4, 2) = (1 + 1 mod 3, 2 + 4 mod 5, 1 + 2 mod 7) = (2, 1, 3)

The Chinese Remainder Theorem allows us to compute that (2, 1, 3) represents 101, which
is the correct sum of x and y.

If we instead add x and z = 100 = (1, 0, 2), we get:

x+ z = (1, 2, 1) + (1, 0, 2) = (1 + 1 mod 3, 2 + 0 mod 5, 1 + 2 mod 7) = (2, 2, 3)

which represents 17, because x+ z = 22 + 100 = 122 = 17 mod 105.

Modular multiplication works similarly: To multiply two numbers in RNS representation,
we multiply their corresponding residues modulo their base. For example, with the pre-
vious bases m = (3, 5, 7), we can multiply a = 6 = (0, 1, 6) and b = 9 = (0, 4, 2) modulo
M = 3 · 5 · 7 = 105 as follows:

a · b = (0, 1, 6) · (0, 4, 2) = (0 · 0 mod 3, 1 · 4 mod 5, 6 · 2 mod 7) = (0, 4, 5)

which correctly represents 54 = 6 · 9, since 54 mod 3 = 0, 54 mod 5 = 4 and 54 mod 7 = 5.

4.2.3 Choice of Moduli

RNS only requires the set of moduli to be pairwise coprime. However, since we want to
combine RNS and NTT, we must choose moduli that are compatible with NTT. This means

27

4 Accelerating FHE

that moduli must be prime and contain suitable primitive roots of unity. In other words,
each RNS modulus must also be a working modulus for an NTT of the polynomial length.
Fortunately, we can pre-compute such RNS bases as part of the encryption parameters.

4.2.4 Converting to and from RNS

Converting between RNS and a normal weighted binary system is computationally ex-
pensive, which can negate the speed-up that we want to achieve. However, this is rarely
a problem in our use-case, since we can typically specify the encryption parameters to
be used. If the secret-holding party (i.e. the client) knows that we expect a certain RNS
representation, it can perform the key generation, encryption and decryption in this RNS
form as well, thus skipping the conversion step or combining it with other expensive op-
erations. This is a common technique and is also how encryption is handled in Microsoft
SEAL, which we will compare against later.

4.3 Our Implementation

In this section, we describe our improved implementation, which combines the RNS and
NTT techniques described above.

4.3.1 RNS Representation of Polynomials

We want to use RNS representations to improve arithmetic performance, especially mul-
tiplication. Consider that our data has the following logical structure:

• A ciphertext consists of at least two polynomials.
• Each polynomial has n coefficients, where n is a power of two, typically between

1024 and 32768.
• These coefficients may have hundreds of bits.

We can use an RNS representation for the polynomials constituting a ciphertext, but there
are multiple possibilities for storing the polynomials in this form. In all RNS representa-
tions, coefficients are split into multiple residues. The difference is in where these residues
are stored in memory:

1. The residues of each coefficient could be stored next to each other and kept in a single
polynomial (which is just an array). This results in an array of tuples of residues
layout.

2. The residues of each coefficient could be separated and stored in different arrays.
This results in a tuple of arrays of residues layout, where all residues in an array
correspond to the same modulus.

28

4.3 Our Implementation

Our implementation uses option two, i.e. a tuple of arrays of residues layout. We also
refer to these arrays of residues of the same modulus as sub-polynomials, so in our imple-
mentation, a polynomial in RNS representation is a tuple of sub-polynomials. This has
the following advantages:

• Separating the residues allows for more flexibility in distributing the data between
DPUs or DPU threads.

• It simplifies the iteration over residues of the same modulus, because this is an itera-
tion over continuous memory. Option one would require strided access in this case,
which is less efficient for buffering.

4.3.2 Splitting Polynomials Between DPUs

In our implementation, each DPU operates on sub-polynomials of a specific modulus,
which can be set by the host. As an example, consider two ciphertexts ct and ct′ with
three primes m1, m2, m3 as RNS moduli. In RNS representation, each polynomial of these
ciphertexts consists of three sub-polynomials:

ct = (ct0, ct1) = ((ct0m1 , ct0m2 , ct0m3), (ct1m1 , ct1m2 , ct1m3))

ct′ = (ct′0, ct
′
1) = ((ct′0m1

, ct′0m2
, ct′0m3

), (ct′1m1
, ct′1m2

, ct′1m3
))

To add these ciphertexts, one DPU would be configured for modulus m1 and operate on
sub-polynomials ct0m1 , ct1m1 , ct′0m1

and ct′1m1
. Another DPU would be configured for

modulus m2 and operate on sub-polynomials ct0m2 , ct1m2 , ct′0m2
and ct′1m2

. And a third
DPU would operate on the remaining sub-polynomials for modulus m3.
The advantage of this is that each DPU only has to operate on a single modulus and
also only needs the support data (like NTT twiddle factors) for this one modulus, which
reduces the memory and transfer requirements for the DPUs. Of course, multiple DPUs
can also be configured for the same modulus to improve throughput if required.

4.3.3 CPU-DPU Interface

As part of a DPU program, the UPMEM SDK allows defining symbols, which denote
memory regions in MRAM or WRAM for transferring data between DPUs and the CPU.
These symbols are compiled into the DPU binary and the position and size of their regions
are static.
This leaves some options for designing the interface between DPUs and the host CPU.
We could define a separate symbol for every chunk of data that we need in the inter-
face. For example, different symbols for input_polynomials, output_polynomials,
commands, twiddle_factors, modulus_data, etc.

29

4 Accelerating FHE

However, this approach has a few problems: The optimal interface layout depends on the
encryption parameters and other dynamic factors. For example, the number of twiddle
factors (and thus memory needed for the twiddle_factors symbol) depends on the
length of the polynomials, and the optimal memory split between input_polynomials,
output_polynomials and commands depends on the operations to be performed.
Thus, for an optimal interface layout, the DPU program would need to be recompiled
whenever one of these parameters change. Additionally, the UPMEM SDK requires the
host to perform a separate data transfer for every symbol it wants to access, which could
limit performance.

Instead, we use a single MRAM symbol for our interface. The memory at this symbol
begins with a header, which we call the auxiliary data, followed by the main data — an ar-
ray of DPU words (32-bit integers) which spans the rest of the DPU’s MRAM. The header
contains information about the rest of the data, like the polynomial length, the modulus
and the number of commands. It also contains some pre-computed data, like the modu-
lar inverse of the polynomial length. Lastly, it contains offsets into the main data, which
define where different data sections start, like the twiddle factors, the commands or the
sub-polynomials to operate on. This design is very flexible, because it allows the host to
dynamically define the positions and sizes of the various data sections. It also allows the
host to update multiple of these sections in a single data transfer.

Command Structure

In our implementation, DPUs receive a list of simple commands, which they execute se-
quentially. But these simple commands can be composed into more complex operations.
A command consists of four 16-bit integers: The command type and three arguments out,
A and B. The command type is an enumeration of commands like ADD, MUL_POINTWISE,
FWD_NTT or STOP. The arguments out, A and B specify indices of the input and output
polynomials in main data. Some commands operate in-place on the out polynomial and
ignore the A and B arguments. Special batching commands like INV_NTT_BATCH take a
range of polynomials instead and perform the given operation on all of them. This im-
proves performance for operations using coarse-grained multi-threading (see below).

4.3.4 Multi-Threading

We run 16 threads per DPU. This is to ensure that the DPU’s pipeline is always saturated,
even when some threads are blocked on DMA operations. This number also simplifies
splitting coefficients of a sub-polynomial between threads, because the number of threads
and the polynomial length are both a power of two. To ensure data consistency, threads

30

4.3 Our Implementation

are synchronised between commands.
We differentiate between fine-grained and coarse-grained multi-threading. In fine-
grained multi-threading, multiple threads are simultaneously operating on the same
sub-polynomials. This type of multi-threading can improve performance, even when
operating on few sub-polynomials. In coarse-grained multi-threading, each thread oper-
ates on its own sub-polynomials independently from other threads. For the maximum
performance improvement, this type of multi-threading requires operating on many sub-
polynomials concurrently.
We use fine-grained multi-threading for element-wise operations, like modular addition
or multiplication. These operations are easily parallelisable and require no synchron-
isation between threads. For more complicated operations, like NTT and iNTT, we use
coarse-grained multi-threading instead. This avoids synchronisation overhead, and while
it can limit performance when operating on only a few sub-polynomials, in a typical use-
case, all incoming data and all results are transformed via NTT and iNTT respectively,
which means that situations with few sub-polynomials should be rare.

4.3.5 Improvement over Previous Implementation

The initial version of this improved implementation already outperforms our previous
128-bit implementation. Recall that our previous implementation required ~1000 ms
(computation time only) to perform the modular element-wise multiplication test on
40960 polynomials with 4096 109-bit coefficients each. Our improved implementation
only requires 353 ms for the equivalent task of performing modular element-wise mul-
tiplication on 4 · 40960 = 163840 sub-polynomials, each with 4096 27-bit coefficients. To
perform modular polynomial multiplication (which previously took over an hour), these
sub-polynomials can also be transformed using NTT, then multiplied pointwise and fi-
nally transformed back using iNTT, which only takes about 7.9 seconds for the above
example of 40960 polynomials.
Our improved implementation is also more flexible, since it can easily adapt to different
coefficient sizes by using a larger RNS base, i.e. increasing the number of sub-polynomials.
For example, to use 150-bit coefficients, our improved implementation can use five moduli
with 30 bits each. In contrast, our previous implementation was unable to handle coeffi-
cients larger than 128 bits without manual changes. Additionally, since our improved
implementation splits each polynomial into multiple sub-polynomials, operations using
coarse-grained multi-threading can be parallelised more, even without changing their im-
plementations.
Since we have already significantly improved upon our previous implementation, in the
following section, we will compare our improved implementation to Microsoft SEAL in-

31

4 Accelerating FHE

1 2 4 8 16 32 64
Number of threads

0

2000

4000

6000
R

un
ti

m
e

(m
s)

5530

2888

1449
1029

656 633 635

3849

2136

993 746 476 495 477

NTT
iNTT

Figure 4.2: Runtime of SEAL for NTT and iNTT using different numbers of threads, tested
on 32768 ciphertexts with polynomials of length 4096 and 72-bit coefficients
(65536 polynomials in total).

stead, which is a popular and optimised HE library.

4.4 Performance Evaluation

We analyse the performance of our implementation and compare it to Microsoft SEAL
[SEA23] regarding both runtime and energy efficiency. We test three operations, which
are typical for FHE schemes, namely NTT, iNTT and BGV multiplication, which consists
of four modular polynomial multiplications and one modular polynomial addition. All of
these operations are performed on many ciphertexts and repeated multiple times, to get
more accurate results. We first test the basic implementation (as described in the previous
section) and then explore additional optimisations.

For BGV multiplication, we assume that the ciphertexts are stored in NTT form (for com-
parability with Microsoft SEAL). These BGV results can also be added with the NTT (and
iNTT) results, to get good approximations of alternate BGV multiplications which include
these steps. For PIM, we only consider the actual computation time (as measured by the
DPUs’ cycle counters) and do not include the time required for transferring data between
the CPU and the DPUs. These computation times can be composed together and if re-
quired, the transfer times can simply be added. In the following tests with 32768 cipher-
texts, transferring them to the DPUs takes about 178 ms. As we have seen previously,
transfer times scale linearly with the amount of data and are mostly dominated by the
DPU computation times for these complex operations.

32

4.4 Performance Evaluation

4.4.1 Comparing to Microsoft SEAL

Microsoft SEAL [SEA23] is a popular open-source HE library. SEAL supports the BFV,
BGV and CKKS6 HE-schemes and also uses optimisations like RNS and NTT. We use
SEAL as an optimised CPU implementation to compare against.

For the following benchmarks, we create the test data using SEAL, by generating cipher-
texts which encrypt increasing values. When comparing polynomial operations (like
NTT) on some number of polynomials p, we only generate p/2 ciphertexts, since freshly
encrypted ciphertexts consist of two polynomials each.

Ciphertext Moduli

Because SEAL uses modulus switching for both BGV and BFV, the ciphertext moduli are a
bit smaller than in the previous chapter. For example, with a polynomial length of 4096,
SEAL uses a key level of 109 bits7 with an RNS base of three moduli (36, 36 and 37 bits),
but ciphertexts only use the first two moduli and thus have 72-bit coefficients (2 · 36-bit).

For the comparisons, our DPU implementation uses ciphertext moduli of the same size
as SEAL, but with different, DPU-compatible RNS bases (moduli of at most 32-bit each).
This makes the computations directly comparable, but can be a suboptimal choice for the
DPU implementation (see Section 4.4.5).

SEAL Measurements

We use SEAL version 4.1.2 compiled with default CMake options using clang-12. Our test
machine has an Intel Xeon Gold 5415+ processor (8 cores, 16 threads, up to 4.1 GHz clock
frequency) with 128 GB of RAM. We test the performance of SEAL for NTT, iNTT and
BGV multiplication on all generated ciphertexts8. We split these tasks between multiple
threads using Barak Shoshany’s thread pool library [Sho24]. We first perform a test to
determine the optimal number of threads for the SEAL implementation. As shown in
Figure 4.2, performance scales all the way to the maximum number of concurrent threads
in the system (16). As such, in the following benchmarks, our SEAL implementation will
use all available threads. Figure 4.3 shows the performance of SEAL for NTT, iNTT and
BGV multiplication, which we will compare against.

6CKKS is an HE-scheme for arithmetic on approximate numbers (see [CKKS17]).
7This is the default setting, which corresponds to a 128-bit security level according to the Homomorphic

Encryption Standard [ACC+18].
8Specifically, we call seal::Evaluator::transform_to_ntt_inplace(seal::Ciphertext&) and
seal::Evaluator::transform_from_ntt_inplace(seal::Ciphertext&) for NTT/iNTT and
seal::Evaluator::multiply_inplace(seal::Ciphertext&, const seal::Ciphertext&,
seal::MemoryPoolHandle) for BGV multiplication (using thread-local memory pools).

33

4 Accelerating FHE

NTT iNTT BGV multiplication
Operation

0

300

600

R
un

ti
m

e
(m

s) 633

483

195

Figure 4.3: Performance of multi-threaded SEAL for NTT, iNTT and BGV multiplication,
tested on 32768 ciphertexts with polynomials of length 4096 and 72-bit coeffi-
cients.

4.4.2 Initial Performance

We test the performance of our initial implementation for the same task, i.e. performing
NTT and iNTT transformations as well as BGV multiplications on 32768 ciphertexts with
polynomials of length 4096 and 72-bit coefficients. Note that, since our moduli are limited
to 32 bits, we use a different RNS base (consisting of three 24-bit moduli). The runtime
for NTT is 4737 ms, while iNTT takes 5155 ms. This is comparable to the performance
we measured for SEAL when using a single thread, but is about 7.5-times and 10.7-times
slower than multi-threaded SEAL for NTT and iNTT respectively. Notably, the BGV mul-
tiplication tests are only 4.2-times slower than multi-threaded SEAL, at 817 ms.

Even though our initial implementation is a lot slower than SEAL, it is reassuring that we
can at least match its single-threaded performance in these tests, especially since SEAL is
highly optimised.

4.4.3 Optimisations

In the following, we improve the performance of our implementation by exploring addi-
tional optimisations. Figure 4.4 shows the effect of these optimisations on the runtime of
our tests. Because we expect the majority of the time to be spend on modular multiplica-
tion, we start by improving the performance of multiplication and modular reduction.

Multiplication

In Section 3.1 we tested the DPUs’ performance for basic arithmetic on native integers
(as implemented by the compiler) and noticed that multiplications become significantly

34

4.4 Performance Evaluation

slower for larger integers. Specifically, 64-bit multiplication is over three times slower than
32-bit multiplication.
While the RNS representation limits our inputs to 32-bit values, we still need 64-bit in-
termediate multiplication results to correctly perform modular reductions. However, the
native 32-bit multiplication only produces 32-bit results. Thus, when using native arith-
metic, we have to perform full 64-bit multiplications to get correct results, even though
our inputs are only 32-bit values.
We can improve multiplication performance by implementing a custom routine, which
takes 32-bit inputs and produces a 64-bit result. We take an approach similar to the native
16-bit multiplication (see Section 2.2.1) and construct our result by appropriately shifting
and adding the results of 16 smaller (8x8-bit) multiplications. Our custom multiplication
achieves a runtime of 37 cycles (including the function call to our routine), which is 97
cycles faster than the native 64-bit multiplication, or a time reduction of 72% and translates
to a time reduction of about 13.5% for the NTT, iNTT and BGV multiplication tests.
We can apply the same technique to optimise the 32-bit multiplication that only produces
32-bit results, which is used in Barrett reductions (see below). The result is a runtime of
23 cycles (including the function call), which is up to 20 cycles faster than the native 32-
bit multiplication. Recall that the runtime of the native implementation depends on the
value of its inputs (see Section 2.2.1), which is because the native implementation makes a
compromise: It is optimal for small inputs, which are typical in many applications, but is
relatively slow in the worst case. Our custom multiplication routine has constant runtime
instead. The result is that our implementation is faster when both factors are longer than
12 bits, but is otherwise slower than the native implementation. However, this is still
an improvement for our use-case. Since we are operating on encrypted data, the input
values are seemingly random (uniformly spread between zero and the specific modulus)
and thus for a typical modulus size of ~27 bits, almost all inputs will be longer than 12
bits, which benefits our custom multiplication.

Barrett Reduction

The modular reduction after a multiplication is another slow operation, since it naively re-
quires a 64-bit by 32-bit division. As an improvement, we can use Barrett reduction instead,
which is optimised for repeated reductions by the same modulus and was first introduced
by Barrett [Bar86] for a fast RSA implementation. We will briefly explain how it works:
Given an integer v and a modulus m, we want to find the remainder x = v mod m =

v −m · ⌊v/m⌋. The idea of Barrett reduction is to pre-compute the reciprocal r = m−1 of
the modulus and to compute the remainder as x = v −m · ⌊vr⌋ instead. Since r will be a
fractional number less than one and we do not have fast floating point arithmetic, we need

35

4 Accelerating FHE

to scale and then round off r, to represent it as an integer R. This means that instead of r,
we pre-compute R = ⌊2n/m⌋ for some scale 2n. The remainder can then be approximated
as x ≈ v − m · ⌊vR/2n⌋. The scale 2n must be a power of two, so that ⌊vR/2n⌋ can be
computed using a simple bit-shift. The result is that we exchanged the original division
for a multiplication and a bit-shift, which can be computed much faster. Note however,
that x ≈ v − m · ⌊vR/2n⌋ only approximates the remainder, because of the rounding in
R = ⌊2n/m⌋. But if the scale 2n is large enough9, then ⌊vR/2n⌋ will differ from the correct
value of ⌊v/m⌋ by at most one. Thus, the resulting x will be in the range [0, 2m) and can
be correctly reduced modulo m with a final conditional subtraction.
In our implementation, the Barrett factor R of every modulus is pre-computed by the host
and transferred to the appropriate DPUs as part of the auxiliary data. In the NTT, iNTT
and BGV multiplication tests, Barrett reduction reduces the runtime by ~50% compared to
our initial implementation. By combining it with the optimised multiplications described
above, we achieve a total time reduction of ~64%, ~67% and ~71.5% for the NTT, iNTT
and BGV multiplication tests respectively (compared to our initial implementation).

MRAM Buffering

In Section 3.2.4 we described a way to reduce the overhead associated with MRAM ac-
cesses by increasing the access size and buffering additional data. We can apply the same
technique to our improved implementation. Since the improved implementation uses
RNS to limit input values to 32-bit, it requires less stack space than the previous 128-bit
implementation. We use the additional stack space to increase the buffer size of each
thread up to 768 bytes. Combining this MRAM buffering with the previous optimisations
yields an additional time reduction of ~36%, ~31% and ~46% for the NTT, iNTT and BGV
multiplication tests respectively.

Modular Addition and Subtraction

We can also incorporate some of the optimised modular addition and subtraction tech-
niques described in Section 3.2.4. This achieves an additional time reduction of ~1.8%,
~2.5% and ~0.9% for the NTT, iNTT and BGV multiplication tests respectively.

Scrambled Twiddle Factors and Better Buffering

By combining all of the above optimisations, we are already faster than our multi-threaded
SEAL system for the BGV multiplication tests. However for the NTT and iNTT tests, our

9The scale should be a power of two larger than the square of the modulus. Since our moduli are limited to
32 bits, we can always use 264.

36

4.4 Performance Evaluation

Initia
l (RNS + NTT)

Initia
l + multip

lication

Initia
l + reduction

Initia
l + mult. & reduct.

Previous + bufferin
g

Prev. + add. & sub.

Prev. + scrambled

& improved bufferin
g

Optimisations

0

1600

3200

4800

C
om

pu
ta

ti
on

ti
m

e
(m

s)

4737
4102

2344
1698

1089 1069 847

5155
4455

2534

1707
1177 1148 901817 706

410 233 126 125 125

NTT
iNTT
BGV multiplication

Figure 4.4: Overview of the impact of DPU optimisations on the runtime of NTT, iNTT
and BGV multiplication tests for 32768 ciphertexts with polynomials of length
4096 and 72-bit coefficients.

DPU implementation is still 1.69-times slower and 2.38-times slower than SEAL respect-
ively. Thus, we will now look more closely at our NTT and iNTT implementation and
perform additional improvements.

Figure 4.5 shows the butterfly stages in our NTT and iNTT implementation. Note that
the iNTT butterflies (bottom) differ slightly from the NTT Cooley-Tukey butterflies (top),
which we described in Section 4.1.4. But more importantly, the order in which the twiddle
factors are used, differs for NTT and iNTT. In our current implementation, iNTT iter-
ates backwards through the polynomials (bottom to top in our illustration), to match the
twiddle factors in reverse order. However, we can also reorder the twiddle factors instead,
which allows iNTT to iterate forwards through memory. This results in a scrambled order
of the twiddle factors, which is different from bit-reversed order. To be precise, the i-th
inverse root of unity power ψ−i is stored in position 1 + bit_reverse(i− 1).

On its own, this only improves iNTT performance by ~1%, but it allows us to further
improve MRAM buffering. Previously, we only buffered the coefficients within each but-
terfly group sharing a twiddle factor. This works great for butterfly stages which consist
of few large groups, like the early stages of NTT, or the final stages of iNTT. But it is
suboptimal for stages consisting of smaller groups, since the number of buffered coeffi-
cients is limited by the group size. For example, in the second stage of an iNTT, only four
coefficients can be buffered with our previous implementation.

37

4 Accelerating FHE

Our improved implementation can instead utilise the whole buffer space in all stages. This
results in an additional ~20.7% time reduction for the NTT tests. Due to the scrambled
twiddle factors, we can also apply this better buffering to iNTT, for an additional ~21.5%
time reduction.

Resulting Performance

Figure 4.4 shows the impact of the optimisations described above on the NTT, iNTT and
BGV multiplication tests. Compared to our initial implementation, we achieved a total
time reduction of ~82.3% for NTT and iNTT, and a time reduction of ~84.7% for BGV
multiplication. Thus, our optimised implementation is only 1.34-times slower and 1.87-
times slower than multi-threaded SEAL for NTT and iNTT respectively. For the BGV
multiplication tests, our optimised implementation is actually faster than SEAL, requiring
about 35.9% less time.
Even though FHE is memory bound on conventional architectures, our DPU implement-
ation is still constrained by computational performance, which is mainly due to the slow
multiplication on DPUs for integers larger than 8 bits. We confirmed this by running ad-
ditional tests, in which we replaced our multiplication routines with dummy versions,
which take ~83% less time to execute. This resulted in an additional time reduction of
~68% for BGV multiplication and ~62.5% for NTT and iNTT compared to our optimised
implementation. Of course, these are not “real” results, as the dummy methods do not
actually perform multiplications and thus the resulting ciphertexts are wrong, but they il-
lustrate the impact that faster multiplications would have on the performance of our DPU
implementation.
As it stands, our optimised DPU implementation is slightly faster than SEAL for BGV
multiplication only, but slower than SEAL for NTT and iNTT. In theory, many such mul-
tiplications can be performed after a single NTT operation, before transforming back us-
ing iNTT. Thus, the speed advantage of the PIM-based multiplication could accumulate
and offset the slower NTT operations. However, this would require roughly nine mul-
tiplications between an NTT/iNTT pair just to break even, which is unrealistic, because
relinearisation (and modulus switching) would have to be performed in between. In our
implementation, this also requires inter-DPU communication, which is relatively slow.
If however, the data is already transformed, e.g. because it was generated/sent in NTT
form by the client, then the NTT performance of our implementation is less important
and it could be possible to benefit from the faster BGV multiplication. Unfortunately, this
would not be a very significant advantage, especially since our SEAL test system does not
use the fastest and most recent CPU model, which would likely improve its performance
and negate the slight benefit of our DPU implementation. This comparison also does not

38

4.4 Performance Evaluation

Stage 1 Stage 2 Stage 3
c0

c1

c2

c3

c4

c5

c6

c7

t0

t4

t2

t6

t1

t5

t3

t7

+

−ψ4

+

−ψ4

+

−ψ4

+

−ψ4

+

−ψ2

+

−ψ2

+

−ψ6

+

−ψ6

+

−

+

−

+

−

+

−

ψ1

ψ5

ψ3

ψ7

Stage 1 Stage 2 Stage 3
n−1

c0

n−1

c1

n−1

c2

n−1

c3

n−1

c4

n−1

c5

n−1

c6

n−1

c7

t0

t4

t2

t6

t1

t5

t3

t7

+

− ψ−4

+

− ψ−4

+

− ψ−4

+

− ψ−4

+

− ψ−2

+

− ψ−2

+

− ψ−6

+

− ψ−6

+

−

+

−

+

−

+

−

ψ−1

ψ−5

ψ−3

ψ−7

Figure 4.5: Illustration of the butterfly stages for NTT (top) and iNTT (bottom). Shown
here for n = 8 with log2(n) = 3 stages. The bit-reversed order of the root-
of-unity-powersa is ψ4, ψ2, ψ6, ψ1, ψ5, ψ3, ψ7. Note that this perfectly matches
the order of the NTT butterflies (top to bottom, left to right), while the iNTT
butterflies must be evaluated in a different order (bottom to top, left to right)
to match the twiddle factors in reverse. This can result in sub-optimal memory
access patterns.

aFor iNTT, these are powers of the inverse root of unity ψ−1, i.e. ψ−4, ψ−2, ψ−6 and so on.

39

4 Accelerating FHE

CPU: NTT
CPU: iNTT

CPU: BGV mul.
PIM: NTT

PIM: iNTT

PIM: BGV mul.

System and Operation

0

200

400

Po
w

er
dr

aw
(W

at
ts

)

3.8 4.3 6.4

346.9 346.9 346.9

121 129 123
64 64 64

125 133 130

411 411 411RAM/PIM
CPU package
Total

Figure 4.6: Power draw of the SEAL and DPU implementations while looping operations
on 32768 ciphertexts with polynomials of length 4096 and 72-bit coefficients.

consider the energy efficiency, which we will evaluate next.

4.4.4 Energy Efficiency

For comparing energy efficiency against Microsoft SEAL, we test our most optimised
DPU implementation. We use the Linux perf tool to measure the power consump-
tion of the test systems. Specifically, we monitor the /power/energy-pkg/ and
/power/energy-ram/ events. This uses the Intel RAPL (Running Average Power
Limit) interface, which allows separately measuring the power of the package domain and
the memory domain, which correspond to the processor die (CPU) and the attached DRAM
respectively [Int24].

The CPU power measurement works on both test systems. However, the memory power
measurement is only valid for the CPU system. For the PIM system, it is not currently
possible to measure the power consumption of the PIM DIMMs in software. We also do
not have access to the cloud servers, to perform hardware measurements. Thus, we have
to estimate the power consumption of the PIM DIMMs, which according to UPMEM,
consume about 20 Watts when fully loaded.

Our PIM system has 20 PIM DIMMs, which contain 2560 DPUs in total. However, we can
only use 2220 of these DPUs, since some of them are disabled. Assuming that this ~86.7%
utilisation transfers linearly to the power consumption, we expect the PIM DIMMs to
draw 346.9 Watts during our tests.

40

4.4 Performance Evaluation

NTT iNTT BGV multiplication
Operation

0

200

400
En

er
gy

co
ns

um
p.

(J
ou

le
s)

79.0 64.3
25.3

348.7 370.8

51.6

CPU system
PIM system

Figure 4.7: Energy consumption of the SEAL and DPU implementations for operations on
32768 ciphertexts with polynomials of length 4096 and 72-bit coefficients.

Power Draw

Figure 4.6 shows the power draw of our CPU and PIM systems while looping NTT, iNTT
and BGV multiplication tasks. We can see that in the CPU system, the majority of the
power is used by the CPU, while in the PIM system, most of the power is used by the PIM
DIMMs. In total, the PIM system consumes more power than the CPU system in these
tests. While the CPU of the PIM system is mostly idle during the tests, it still consumes
a considerable amount of power. The system seems to continuously saturate 1–2 CPU
threads, while the DPUs are running, which might prevent the CPU from entering a lower
power state. We suspect that this is due to some internal bookkeeping or synchronisation
in the UPMEM SDK. Note however, that the idle CPU threads can also be used to perform
other tasks, which could potentially reduce the effective power consumption of our DPU
implementation, if the CPU is already in a high power state.

Energy Consumption

By combining the results of the power draw tests and the earlier runtime tests, we can
calculate the energy requirements for these operations on the CPU and PIM systems. This
is shown in Figure 4.7. We can see that the PIM system requires more energy than the
CPU system for all tested operations. Even tough our DPU implementation is faster than
SEAL for BGV multiplication, this advantage is offset by the higher power consumption.

4.4.5 Ciphertext Moduli

When choosing a ciphertext modulus, the individual RNS moduli should be as large as
possible, while still fitting into a machine word, as this minimises the number of moduli

41

4 Accelerating FHE

and thus the number of sub-polynomials which need to be manipulated. Additionally, it
maximises the efficiency of operations on these machine words, because the operations
are typically constant-time, regardless of how “full” their input words are. However, be-
cause DPUs have 32-bit words and SEAL uses 64-bit words, their optimal RNS bases are
different and using ciphertext moduli of the same size as SEAL can be a suboptimal choice
for our DPU implementation.
In the above tests, SEAL uses an RNS base with two 36-bit moduli for ciphertexts, which
corresponds to three 24-bit moduli on DPUs. When choosing such an RNS base for DPUs
directly, we could have used three 27-bit moduli instead, which would increase the cipher-
text modulus and potentially allow for more homomorphic operations before requiring
bootstrapping. However, in our benchmarks, we only care about the runtime of these op-
erations and since our optimised multiplication and Barrett reduction are constant-time,
their runtime is the same for 24-bit and 27-bit moduli. Thus, only our unoptimised imple-
mentations are affected by the moduli discrepancy described above.

4.4.6 Unsuitable Optimisations

In this section, we discuss some additional optimisations which we considered, but which
were unsuitable for our use case. We focus on optimising multiplication, since our imple-
mentation is mostly constrained by its multiplication performance.

Smaller RNS Moduli

RNS allows us to operate on smaller values and we use it to split large coefficients into
groups of 32-bit integers. Since multiplication of 16-bit integers is even faster, one could
ask why we do not split our coefficients into 16-bit or even 8-bit integers instead. The
reason is that we still need to perform NTT on the resulting sub-polynomials. As stated in
Section 4.2.3, each RNS moduli must also be a working modulus for an NTT of the poly-
nomial length. For a typical polynomial length of 4096, this means that all RNS moduli
must be one higher than a multiple of 8192. In the numbers up to 216, we could thus find
at most 7 such moduli (even fewer in practice), which is insufficient for almost all use
cases of FHE. We chose 32-bit moduli for our implementation, because this is the smallest
(and thus fastest) common bit size, which is still practical for our use case.

Karatsuba Multiplication

As described in Section 4.4.3, we perform 32-bit multiplication by appropriately shifting
and adding the results of 42 = 16 smaller (8x8-bit) multiplications. It seems obvious to
use Karatsuba multiplication instead, which would only require 32 = 9 multiplications.

42

4.4 Performance Evaluation

However, this is not actually faster, since the additional bookkeeping, like additions, sub-
tractions and register shuffling, offset the potential savings. It is easy to see that the native
16-bit multiplication can not be sped-up using Karatsuba multiplication, as its constitu-
ent 8-bit multiplications require just one cycle each. Thus, Karatsuba multiplication could
only be useful for reducing the number of 16-bit multiplications that are part of a 32-
bit multiplication. Consider two 32-bit numbers a = a0a1 and b = b0b1 split into the
16-bit parts a0, a1, b0 and b1. The classical Karatsuba multiplication requires computing
(a0 + a1) · (b0 + b1). However, since the parts are 16-bit each, a0 + a1 and b0 + b1 can be
17 bits long and (a0 + a1) · (b0 + b1) must then be computed as a 17x17-bit multiplication.
This is difficult to implement and slower than the naive version. There is an alternative
Karatsuba implementation, which requires computing |a0 − a1| · |b0 + b1| instead and then
applying the expected sign to the result. This stores the 17-th bits separately (as the ex-
pected sign) and thus only requires 16x16-bit multiplications. However, the additional
comparisons (for computing the absolute differences |a0 − a1| and |b0 + b1|) and the con-
ditional negation of the result, together with the aforementioned bookkeeping are more
expensive than just performing an additional multiplication. Even with a hand optimised
assembly implementation, we could only achieve a runtime of 41 cycles, which is slower
than our multiplication routine described in Section 4.4.3, which takes 37 cycles. Note
however, that Karatsuba multiplication is beneficial for 64-bit and 128-bit multiplications,
as used in chapter 3.

43

5 Conclusions

In this chapter, we summarise our results and provide an outlook into possible further
research and future advancements.

5.1 Summary

We presented a detailed evaluation on the suitability of the UPMEM PIM system for accel-
erating FHE operations. As part of this evaluation, we explored the DPU architecture and
its performance characteristics, devised and implemented many optimisations and tested
their impact on different operations which are typical for FHE.

We analysed the implementation and performance of the native arithmetic operations on
DPUs, showing that DPUs are constrained by multiplication performance. We explained
the RNS and NTT techniques for optimising multiplication, as well as their parameter
requirements. Using these techniques, we developed an improved implementation of
polynomial operations on DPUs, which can be combined into more complex FHE opera-
tions. We also designed a suitable interface for communicating with DPUs and described
our threading models for different operations. We further improved the performance of
our implementation by applying additional optimisations, including a custom multiplic-
ation routine optimised for the expected input values of our use case. Additionally, we
described our implementation of Barrett reduction, which replaces the division-based re-
duction algorithm and greatly improves the performance of modular reduction. With
these optimisations, we significantly improved upon prior results [GKG+23] for HE per-
formance on an UPMEM PIM system. Furthermore, we compared the performance of our
implementation with Microsoft SEAL, which is a popular CPU implementation for FHE.
We showed that our optimised BGV multiplication using DPUs is slightly faster than a
comparison system running SEAL, but that NTT and iNTT operations remain slower and
our DPU implementation is still limited by multiplication performance. Finally, we cal-
culated the power draw and energy efficiency of the PIM system and compared it against
the CPU system running SEAL. The results show that the higher power draw of the PIM
system negates its speed advantage for BGV multiplication and results in higher power
consumption than the CPU system for all tested operations.

45

5 Conclusions

5.2 Answering the Research Question

We evaluated whether the UPMEM PIM system is suitable for improving the throughput
or energy efficiency of FHE operations compared to other optimised implementations.
Based on our results, we come to the conclusion that UPMEM PIM (at least in its cur-
rent version) is not suitable for improving the energy efficiency of FHE operations or for
improving their throughput in a significant way compared to other optimised implement-
ations.
Although we greatly improve upon previous results, FHE operations on UPMEM PIM re-
main bound by multiplication performance. This is caused by the limited hardware multi-
plication support in current UPMEM DPUs. Additionally, the higher power consumption
of the PIM system results in unfavourable energy efficiency.

5.3 Outlook

While CPUs have been developed and improved upon for decades, UPMEM’s DPUs are
relatively new and the future might still hold many advancements for the technology,
which could improve its performance and open up new use cases. We would especially
like to see some sort of hybrid computing, in which the CPU and the DPUs can operate on
the same data in memory. This could allow each component to focus on the (sub-)tasks,
for which it is most performant. For example, in our case, the CPU might perform the NTT
and iNTT transformations, but hand-off the BGV multiplication to the DPUs. In current
UPMEM PIM systems, this is not possible, since the data must first be copied into the
memory of the DPUs and must later be retrieved. The resulting data transfer overhead
reduces the opportunities for such hand-offs.
As possible future work, one might evaluate FHE acceleration using different PIM ap-
proaches or products, like Samsung’s AxDIMMs, which have a DIMM-compatible inter-
face like UPMEM PIM, but use a programmable FPGA fabric instead of DPUs [KZS+22].
One might also evaluate the suitability of PIM systems for other FHE operations like re-
linearisation and modulus switching, or multiplying ciphertexts with plaintexts.

46

References

[ACC+18] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser,
Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter,
Satya Lokam, Daniele Micciancio, Dustin Moody, Travis Morrison, Amit
Sahai, and Vinod Vaikuntanathan. Homomorphic encryption security
standard. Technical report, HomomorphicEncryption.org, Toronto, Canada,
November 2018.

[Bar86] Paul Barrett. Implementing the Rivest Shamir and Adleman public key en-
cryption algorithm on a standard digital signal processor. In Andrew M.
Odlyzko, editor, Advances in Cryptology - CRYPTO ’86, Santa Barbara, Califor-
nia, USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer Science,
pages 311–323. Springer, 1986.

[BGK+18] Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarung-
nirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies,
Parthasarathy Ranganathan, and Onur Mutlu. Google workloads for con-
sumer devices: Mitigating data movement bottlenecks. In Xipeng Shen,
James Tuck, Ricardo Bianchini, and Vivek Sarkar, editors, Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2018, Williamsburg, VA, USA, March
24-28, 2018, pages 316–331. ACM, 2018.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. ACM Transactions on Com-
putation Theory (TOCT), 6(3):1–36, 2014.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lec-
ture Notes in Computer Science, pages 868–886. Springer, 2012.

[BVL+21] Ahmad Al Badawi, Bharadwaj Veeravalli, Jie Lin, Xiao Nan, Kazuaki Mat-
sumura, and Khin Mi Mi Aung. Multi-GPU design and performance evalu-

47

References

ation of homomorphic encryption on GPU clusters. IEEE Trans. Parallel Dis-
tributed Syst., 32(2):379–391, 2021.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homo-
morphic encryption for arithmetic of approximate numbers. In Tsuyoshi Tak-
agi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017
- 23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I,
volume 10624 of Lecture Notes in Computer Science, pages 409–437. Springer,
2017.

[CRS17] David Bruce Cousins, Kurt Rohloff, and Daniel Sumorok. Designing an
FPGA-accelerated homomorphic encryption co-processor. IEEE Trans. Emerg.
Top. Comput., 5(2):193–206, 2017.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calculation
of complex Fourier series. Mathematics of computation, 19(90):297–301, 1965.

[dCAY+21] Leo de Castro, Rashmi Agrawal, Rabia Tugce Yazicigil, Anantha P.
Chandrakasan, Vinod Vaikuntanathan, Chiraag Juvekar, and Ajay Joshi. Does
fully homomorphic encryption need compute acceleration? IACR Cryptol.
ePrint Arch., page 1636, 2021.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. IACR Cryptol. ePrint Arch., page 144, 2012.

[GHF+21] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Ger-
aldo F. Oliveira, and Onur Mutlu. Benchmarking a new paradigm: An
experimental analysis of a real processing-in-memory architecture. CoRR,
abs/2105.03814, 2021.

[GKG+23] Harshita Gupta, Mayank Kabra, Juan Gómez-Luna, Konstantinos Kanello-
poulos, and Onur Mutlu. Evaluating homomorphic operations on a real-
world processing-in-memory system. In IEEE International Symposium on
Workload Characterization, IISWC 2023, Ghent, Belgium, October 1-3, 2023, pages
211–215. IEEE, 2023.

[Int24] Intel Corporation. Intel® 64 and IA-32 Architectures Software De-
veloper’s Manual (Volume 3B), October 2024. Available at https:

//www.intel.com/content/www/us/en/developer/articles/

technical/intel-sdm.html.

48

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

References

[JKA+21] Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho
Lee. Over 100x faster bootstrapping in fully homomorphic encryption
through memory-centric optimization with GPUs. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(4):114–148, 2021.

[KZS+22] Liu Ke, Xuan Zhang, Jinin So, Jong-Geon Lee, Shinhaeng Kang, Sukhan
Lee, Songyi Han, YeonGon Cho, Jin Hyun Kim, Yongsuk Kwon, KyungSoo
Kim, Jin Jung, IlKwon Yun, Sung Joo Park, Hyunsun Park, Joon-Ho Song,
Jeonghyeon Cho, Kyomin Sohn, Nam Sung Kim, and Hsien-Hsin S. Lee.
Near-memory processing in action: Accelerating personalized recommend-
ation with AxDIMM. IEEE Micro, 42(1):116–127, 2022.

[LPY22] Dai Li, Akhil Reddy Pakala, and Kaiyuan Yang. MeNTT: A compact and ef-
ficient processing-in-memory number theoretic transform (NTT) accelerator.
IEEE Trans. Very Large Scale Integr. Syst., 30(5):579–588, 2022.

[NGI+20] Hamid Nejatollahi, Saransh Gupta, Mohsen Imani, Tajana Simunic Rosing,
Rosario Cammarota, and Nikil D. Dutt. CryptoPIM: In-memory acceleration
for lattice-based cryptographic hardware. In 57th ACM/IEEE Design Automa-
tion Conference, DAC 2020, San Francisco, CA, USA, July 20-24, 2020, pages 1–6.
IEEE, 2020.

[PNPM15] Thomas Pöppelmann, Michael Naehrig, Andrew Putnam, and Adrián
Macías. Accelerating homomorphic evaluation on reconfigurable hardware.
In Tim Güneysu and Helena Handschuh, editors, Cryptographic Hardware
and Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo,
France, September 13-16, 2015, Proceedings, volume 9293 of Lecture Notes in Com-
puter Science, pages 143–163. Springer, 2015.

[SEA23] Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL,
January 2023. Microsoft Research, Redmond, WA.

[Sho24] Barak Shoshany. A C++17 thread pool for high-performance scientific com-
puting. SoftwareX, 26:101687, 2024.

[UPM23] UPMEM website: Use cases. https://www.upmem.com/use-cases/,
2023.

49

https://github.com/Microsoft/SEAL
https://www.upmem.com/use-cases/

	Introduction
	Motivation
	Research Focus
	Related Work

	Background
	Fully Homomorphic Encryption (FHE)
	Steps in an FHE Scheme

	The UPMEM Architecture
	Arithmetic Operations
	Threading and Pipeline
	Communication Between DPUs and Host

	Testing the UPMEM System
	Benchmarking Basic Arithmetic
	Basic Polynomial Operations
	Test Conditions
	128-Bit and 256-Bit Arithmetic
	Initial Results
	Optimisations

	Accelerating FHE
	Number-Theoretic Transform (NTT)
	Concepts Required for NTT
	NTT Definitions
	Example
	Fast NTT Algorithms

	Residue Number System (RNS)
	Representation
	Modular Addition and Multiplication
	Choice of Moduli
	Converting to and from RNS

	Our Implementation
	RNS Representation of Polynomials
	Splitting Polynomials Between DPUs
	CPU-DPU Interface
	Multi-Threading
	Improvement over Previous Implementation

	Performance Evaluation
	Comparing to Microsoft SEAL
	Initial Performance
	Optimisations
	Energy Efficiency
	Ciphertext Moduli
	Unsuitable Optimisations

	Conclusions
	Summary
	Answering the Research Question
	Outlook

	References

