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Abstract

The goal of this bachelor thesis was to achieve co-location detection between two fire-
cracker instances by using the transient execution attack called ZombieLoad. ZombieLoad
uses leakage from the line-fill-buffer between the L1 and L2 cache to recover single bytes.
Multiple threat models were examined in order to measure the effects of isolation through
firecracker as well as background noise on the attack’s success. In a second experiment,
ZombieLoad was used to recover byte strings from the attacked process, providing neces-
sary information for identification. The comparison of different execution environments
showed that isolation provided trough the use of firecracker micro-VMs has a negligible
influence on the performance of the ZombieLoad attack. Further experiments regard-
ing the identification of a threshold of leaked bytes and the estimation of the total attack
runtime revealed that detection of co-location is a realistically feasible use case for a Zom-
bieLoad attack.
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Abstract

Das Ziel dieser Bachelorarbeit war es, eine Co-Location-Detection zwischen zwei Firecracker-
Instanzen zu erreichen, indem eine transient execution attack namens ZombieLoad verwen-
det wurde. ZombieLoad nutzt Leaks aus dem Line-Fill-Buffer zwischen dem L1- und L2-
Cache, um einzelne Bytes wiederherzustellen. Es wurden mehrere Bedrohungsmodelle
untersucht, um die Auswirkungen der Isolierung durch Firecracker, sowie die des Hin-
tergrundrauschens auf den Erfolg des Angriffs zu messen. In einem zweiten Experiment
wurde ZombieLoad verwendet, um Byte-Strings aus dem angegriffenen Prozess wieder-
herzustellen, die die notwendigen Informationen zur Identifizierung liefern. Der Vergle-
ich verschiedener Ausfithrungsumgebungen zeigte, dass die Isolierung durch die Ver-
wendung von Firecracker-Micro-VMs einen vernachlidssigbaren Einfluss auf den Erfolg
des ZombieLoad-Angriffs hat. Weitere Experimente zur Identifizierung eines Schwellw-
erts fiir erkannte Bytes und zur Abschdtzung der Gesamtlaufzeit des Angriffs ergaben,
dass die Erkennung von Co-Location ein realistisch durchfiithrbarer Anwendungsfall fiir
einen ZombieLoad-Angriff ist.

iv



Erklarung

Ich versichere an Eides statt, die vorliegende Arbeit selbststindig und nur unter Be-

nutzung der angegebenen Hilfsmittel angefertigt zu haben.

Liibeck, 20.01.2023






Contents

1__Introduction 1
[2 Background| 3
2.1 FHirecracker . . . . . . . . 3
22 Zombieload . ... ... ... ... 5
2.3 Co-locationdetection| . . . . . . . . ... 9
{3 Implementation| 1
3.1 Attack Execution Environment| . . . . . . . .. ... ... ... 11
3.2 Attacker] . . . ... 11
3.3 Evaluation of Implementation . . . . . ... ..... ... ... ... .. ... 14
{4 Experiment: Evaluation of the Execution Environment| 17
4.1 ExperimentalSetup|. . ... ... ... .. .. ... ... .. o L. 17
4.2 Experimental Results and Evaluationf. . . . ... ... ... ... .. .. .. 17
[5  Experiment: Threshold Identification for Recovered Bytes and Runtime Es- |
[_timation| 21
p.1  Experimental Setup|. . . ... ... ... .. ... . . oo oo 21
.2 Experimental Results and Evaluation|. . . . ... ... ... ... ... .. 22
6 _Conclusions| 25
[6.1 Summary|. . . ... ... 25
(6.2 Discussion and Future Workl . . . . . .. . .. ... 26
[References| 27

vii






1 Introduction

As digitization continues and the resulting need for flexibly scalable server resources for
small services increases, serverless computing is becoming an increasingly important con-
cept with expanding possibilities. On the downside, new potential attack scenarios open
up and can be exploited.

Firecracker version 1.0 has only been released at the end of January 2022 [fir22a] and has
already been used and tested for popular cloud computing services like AWS Lambda for
some years [ABIT20]. It might be a new important part of infrastructure for serverless
computing. Firecracker is a Virtual Machine Monitor for minimized virtual machines
(VMs), each hosting a single service function. The amount of services that Firecracker
is capable to run on a single host machine makes it attractive as a possible target for co-
location detection based on side-channels between virtual machines, since it is possible
for an attacker to be co-located with many different processes. One way to create such a
side channel is the ZombieLoad attack [SLM*19], which can randomly leak bytes from
the line fill buffer.

In this work, the chosen scenario is a co-location detection [IGES16] based on the Zom-
bieLoad attack, with the goal of detecting and possibly identifying services that are hosted
simultaneously on the same Hardware.

At the beginning of this thesis, the fundamentals of Firecracker, ZombieLoad and co-
location detection are explained.

Subsequently the original ZombieLoad implementation and optimizations added for this
work in order to increase performance and reduce wrong leakage are discussed. In par-
ticular, the overall setup, the implementation of victim and attacker are described and
evaluated.

In the following chapters, the implementation is used in different attack settings to mea-
sure and evaluate the impact of environmental factors and different attack scenarios. The
first experiment conducted aims at evaluating the effects of the chosen execution envi-
ronment and the addition of background noise on the success of the ZombieLoad attack.
Runtime and correct byte leakage are compared for each execution environment with and
withoud added noise. The goal of the second experiment is to determine the lowest pos-
sible threshold of bytes recovered per byte position at which the correct leakage byte can
still be chosen with high certainty. Using such a determined threshold, runtime estima-
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tions are made for setups with multiple virtual cores in order to deduce the feasibility
of the presented attack in a real-world scenario. This work shows that ZombieLoad is a
viable attack for use in a firecracker environment, as the impact on the attack due to the
isolation provided by firecracker is negligible. Also, it can be demonstrated that Zom-
bieLoad is feasible for co-location detection. Measurements of execution time are used to
provide an estimate of performance in an actual attack scenario.

Finally, a conclusion on the outcome is drawn, limitations of this work are outlined and

an outlook on future work is given.



2 Background

In this chapter the reader will be introduced to the main concepts used in this work. This
includes the VM monitor Firecracker, the Zombiel.oad attack, as well as co-location detec-
tion.

2.1 Firecracker

Firecracker [ABI*20] is an open source virtual machine monitor developed and used by
Amazon Web Services. It is designed for efficient serverless computing. The concepts
of serverless computing and Kernel-based Virtual Machine (KVM), which Firecracker is
based on, as well as Firecracker itself will be explained in the following.

2.1.1 Serverless computing

Serverless computing gets described [BCC™17] by the amount of control a developer has
about the infrastructure the software is deployed on. It gets described on a scale from
Infrastructure-as-a-Service, where nearly full control over the hosting system is given, to
software-as-a-Service, where a developer has no control about the deployment. This is
visualized in figure On this scale, serverless computing is a compromise between
both extremes. The developer has full control over the code while not having to deal with
the operational parts of a deployment. This model of deployment is designed for scalable
services and therefore should be running stateless functions that can be scaled and are fail
resistant. A serverless platform provides the capability to process events like forwarding
web requests to the right process and delivering the response, start and stop instances if
needed or manage the logs.

CEE D

Figure 2.1: Firecracker classified on a scale between Software-as-a-Service and
Infrastructure-as-a-Service
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2.1.2 KVM

The Kernel-based Virtual Machine (KVM) [KKL"07] is a Linux subsystem designed to
use virtualization extensions of hardware [UNR"05] to create and run multiple virtual
machines. The hardware extensions are the guest operating mode, a hardware state switch
and the exit reason reporting. The guest operating mode grants regular privilege levels
where registers and instructions can be selected to be trapped. The hardware state switch
enables to switch in and out of guest mode by switching instruction pointer, segment
and control registers. The exit reason reporting passes on the cause for a switch back
to the hostsystem to enable specific handling of the situation. For a guest system the
guest operating mode provides a from the hosting userspace separated memory, but no
separated CPU schedule.

To allow KVM virtualization to use these hardware extensions, guest mode has been
added to kernel mode and user mode already present in Linux. KVM provides features
for running a virtual CPU like reading and writing of registers or interrupt injection, and

for allocating and mapping memory to a VM.

2.1.3 Firecracker

Firecracker[ABI™20] is based on the Linux Kernel-based Virtual Machine. The so called
MicroVMs running in Firecracker are supposed to provide a fast and memory efficient
environment for serverless computing. MicroVMs differ from regular VMs that they are
intended to provide equivalent security through isolation while being reduced to the min-
imal functions. Because of the designed minimalism Firecracker is able to run up to thou-
sands of MicroVMs per server. Each MicroVM is designed to serve only one function,
and if needed more MicroVMs with the same function are added. Firecracker differs from
common container usage, which are relying on isolation provided through the Kernel, by
not only relying on a single Kernel and the resulting compromise of compatibility and
security. Firecracker is designed to get rid of the compromise and provide maximal com-
patibility and security. It differs in the implementation of similar projects by only using
KVM as the base and not the combination of QEMU and KVM. Instead of QEMU it uses
a newly developed Virtual Machine Monitor with dedicated device model and API. Secu-
rity is provided trough isolation in individual guest systems, as each function has its own
MicroVM. Against micro-architectural side-channel attacks guidance for best-practices is
provided[fir22b]]. Those include disabling Symmetric-MultiThreading, enabling the Linux
kernel mitigations, Kernel Page-Table Isolation, Speculative Store Bypass mitigations, dis-
abling swap and samepage merging and using memory supporting Rowhammer mitiga-
tions.
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2.2 ZombielLoad

This section explains the ZombieLoad attack and its basic principles, as well as co-location
detection.

2.2.1 MDS

Microarchitectural data sampling attacks (MDS attacks) [SLM™19] are described as a type
of attack between memory-based side-channels, that use correlate addresses inside the tar-
geted process and transient-execution attacks, which leaks data from a specific addresses.
These types of attacks are based on the deficient knowledge of microarchitectural buffers
by exploiting microarchitectural faults. This makes use of the property that faults in the
microarchitecture are not communicated to the superordinate one. MDS attacks[Shi21] are
started with a instruction causing a microcode assists or faults. The transient execution of
following instructions is used to gain access to data through an available covert channel.
MDS differs from Meltdown-type attacks [LSG™18] in that the leaked address can not be
specified and therefor leakage of data regardless from significance.

2.2.2 Line Fill Buffer

The line fill buffer (LFB) is a buffer between the L1 and L2 cache. Every miss in the L1
cache leads to allocation of a LFB entry. This marks for every other load, that the process
of retrieving the data is already in progress and is supposed to lower the costs of another
miss in the L1 cache.

2.2.3 TSX

Intels Transactional Synchronization Extensions (TSX) [Int22] is supposed to enable the
processor to dynamically decide if a thread needs to be serialized and perform this seral-
ization only for these crucial parts. A programmer is also able to specify these parts by
them self with so called lock elision. A locked variable is read only. When a transaction is
successful executed the memory operations will made be visible for other processes. An
unsuccessful execution leads to a so called transactional abort, which means a roll back is
performed and all changes are discarded. ZombieLoad uses the TSX feature xbegin, which
starts a transnational region an returns a status code. To commit the executed transaction
xend is called.
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2.2.4 Flush and Reload

Flush+Reload [YF14] is a technique to recover cache lines based on the measured access
time. The attack is executed in three steps. First the attacked memory line gets flushed.
Then the attacking process waits for the targeted process to access the memory. In the
last step the time for reloading the memory is measured because the access time differs
depending on the cache level. If the accessed line is already loaded into the L1-cache the
shortest time will be measured. The time increases with every rising level the line has to
be loaded from. According to the researchers the attack has an above 90% success rate.
ZombieLoad uses this technique to recover the leaked bytes.

2.2.5 ZombielLoad

ZombieLoad [SLM™19] is a fault-driven transient-execution attack that still works on Intel
CPUs with security measures against microarchitectural data sampling (MDS) attacks.

Functionality

ZombieLoad accesses data from the line fill buffer which is used for load and stores. How-
ever, it is unclear whether this is the only point of leakage used by the attack. ZombieLoad
uses loads that require microcode assist and are triggered by a fault. During a microcode
assist a transient execution window is opened within which a stale value can be accessed
for calculations before being forwarded to the correct value. This enables to read and en-
code stale values from the line fill buffer which can be recovered later. For Recovery the
flush and reload method is used. ZombieLoad is not able to leak specific data and leaks
current content from the line fill buffer. This attack is able to leak from all privileges and
is referred to as a data sampling attack.

Variants

There are three variants of the attack[Ins20]. The first one is "Kernel Mapping" and only
works for privileged attackers on machines that are not protected against Meltdown at-
tacks. A huge page with read access through an user accessible address is used. By ac-
cessing these page via its kernel address a a microcode assist is created, leading to a Zom-
bieload. The second variant "Intel TSX" uses a user accessible page and purposely placed
conflicts in the TSX transaction to archive a transient fault leading to a ZombieLoad. The
TSX function xbegin is used to create a microcode assist leading to a falsely executed if-
statement. The third variant "Microcode-Assisted Page-Table Walk" used a page with two
accessible virtual addresses. One virtual address is used to access the content. When the
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accessed bit it cleared and the page is accessed via the second virtual address, the bit has to
be set again. This process needs a microcode assist leading to a ZombieLoad and therefore

resulting in a leakage.

Similar Attacks

ZombieLoad differs from other MDS attacks like RIDL [vSMO*19] and Fallout|[CGG*19]
especially though the point that it still works on newer Intel CPUs. RIDL leaks from the
line fill buffer like ZombieLoad, but only for loads that are not at the time loaded in L1
cache. The attack uses a load to access in-flight data speculatively used by the processor
and recovers like Zombieload the data via flush and reload. Fallout, on the other hand,
leaks from the store buffer. For RIDL and Fallout, the cause of the leakage is also known,

unlike the ZombieLoad leakage.

Domino Bytes

The authors of the ZombieLoad paper[SLMT19] suggest a error detecting technique
named Domino attack for filtering noise in the leakage. The Domino attack uses domino
bytes made out of the high and low nibbles (half a byte) of two successive bytes. This
enables to leak the byte from positions shifted only 4 bits to the predecessor. The overlap
between the resulting bytes is used to filter leaked bytes for those of which the low nibbles
are corresponding to the high nibble of the predecessor as shown in figure
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Figure 2.2: Bytes separated into low and high bits. The domino byte connects matching
bytes from both indices (red) and helps to exclude the wrong one (yellow).
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2.3 Co-location detection

Co-location detection for VMs [IGES16] describes the attempt to gain knowledge about the
presence or type of VMs hosted on the same hardware. Other work about co-location also
refers to is as "co-residence" or "co-tenancy" [PPL15]. Two services are co-located when
they share a host server simultaneously. Co-location detection was previously achieved
through different types of attacks, all of which have in common that they use measurable
contention about shared resources to create a channel for information leakage. This is pos-
sible in a microarchitectural level such as "Prime and Probe" were memory access time is
used to detect LLC usage, or at higher levels of shared resources, like with "Network Prob-
ing" [RTSS09] based on different network properties. Prime and probe techniques usually
create an artificial state in the step referred to as prime to ensure the attack requirements
are fulfilled. In the probe step the prepared stated has to be measured in some way, like
detecting preloaded values in cache or network traffic. In order to detect a specific target,
identifying information is required. In this work Co-location in form of two processes run-
ning on the same physical CPU core, and therefore a share line fill buffer, is being studied.
The detection is also performed on a microarchitectural level.






3 Implementation

In this chapter, the implementation setup and considerations will be outlined. In addition
to the hard- and software used for the general attack setup, implementation optimizations
for increasing performance and decreasing wrong leakage are proposed. The evaluation
shows that reducing the size of the recovery alphabet can significantly increase the match
rate. Moreover, defining a suitable threshold of recovered bytes per position allows us to
reduce wrong leakage.

3.1 Attack Execution Environment

Every test was executed on an Intel-Xeon-Silver 4114 powered server with TSX enabled
and running Ubuntu 20.04. The used Firecracker version was 1.0. The guest used in the
micro-VM was minimized Alpine-OS with gcc installed as all the code is programmed in
C.

The attack aims at recovering data from a line fill buffer. In order to simulate a repeated
load action in the L1-cache we use the victim implementation provided by Borrello[pie19].
It fills each cacheline of a memory page with the same string and accesses the different
lines of the page in a loop to ensure the string is constantly loaded into the line fill buffer.
The loop through the lines ensures that each line is already evicted from the L1-cache on
access and has to be reloaded to the cache.

3.2 Attacker

Based on the ZombieLoad attack example for Linux userspace, provided with the Paper
[Ins20] and an example for domino bytes [piel9] a version capable of leaking domino-
bytes was created. In the following the setup of the original implementation of Zom-
bieLoad as well as the idea behind domino bytes will be explained in order to derive the
resulting ZombieLoad attack with a 4-bit shift.

3.2.1 Original Implementation

The original implementation starts the attack preparation by checking for Intel-TSX sup-
port and notifying if it is not available. This is due to the microcode assist which is used
in this version of the attack being triggered by a fault in an Intel-TSX transaction. Next, a

11
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whole memory page and a mapping to the fill-buffer get initialized with null bytes (0x0)
and the page gets flushed. A flush and reload threshold is determined by measuring the
average reload-time (R) and the average flush-and-reload-time (F) and then calculating

(F+2-R)
3

Now the execution of the attack begins. Each execution first flushes the mapping. Then
the transaction is started by using successful execution of a TSX xbegin instruction as a
condition in an if-statement. The code in the body of the if-statement executes the mem-
ory access, leading to the leakage from the LFB followed by a call for xend to end the
transaction. As a last step, the recovery of the leaked byte via flush and reload is per-
formed.

3.2.2 Shifted Bytes

Shifting the position of leaked bytes is possible[pie19] by adding bit shifts for the high and
low part of the domino byte[2.2.5] The address of the predecessing byte is shifted four bits
to the left added with a logical or to the predecessing byte shifted twelve bits to the right
and the result masked of with an all high byte (0xff)

3.2.3 Derived Optimizations

With the basic Implementation it would already be possible to leak all bytes and corre-
sponding domino bytes to reconstruct a string. Unfortunately, the data is disturbed by a
high hit rate of the first byte on all the following byte positions in the cacheline and the
detection of the leakage rate is low with 255 possible combinations. In this section some
optimizations of the basic attack implementation with regard to performance and wrong
leakage reduction are proposed.

Performance

In order to increase performance, one option would be to decrease the number of possible
values of the leaked byte. This set of bytes is referred to as leakage alphabet or recovery
alphabet. If only a subset of the possible values for a byte is being used as the leakage
alphabet, the recovery can be executed with less flush and reload attempts and a higher
match rate. For the first byte of a string this is possible if limiting properties are known,
e.g. if a specific character is searched. By only shifting every following byte by four bits
from its predecessor, the four high bits are known. Instead of the previously used recovery

12
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Figure 3.1: The correct of the two most leaked bytes [red] is retroactively determined by
the domino byte.

alphabet of 255 values, a smaller recovery alphabet can be used since four known high bits
are resulting in only 2* = 16 possible combinations of the lower bits.

Wrong Leakage Reduction

If the first byte is part of the set of possible bytes, it is always also leaked on the following
positions of unshifted bytes and with a higher match rate. To mitigate this, a high enough
threshold for leaks has to be chosen to ensure that the correct byte is among the to most
leaked bytes. With a higher threshold the second most leaked stands out more from the
other values. The most leaked following domino-byte then can be used to determine the
correct predecessor as shown in figure

13
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How Optimization Was Measured

To measure the effect of the optimizations the hits over a time span of one minute where
recorded with the test string "load". This test was performed on the first two bytes and
their following shifted byte. Now it it possible to calculate the hits per minute, the per-
centage of correct hits and correct hits per minute.

3.3 Evaluation of Implementation

In order to evaluate the implementation setup, tests were conducted with regard to the
speed and the accuracy. The first test for the evaluation of the implementation is the
comparison between the basic implementation with full alphabet (bi_fa), basic implemen-
tation with a reduced alphabet from the ASCII values "A" to "z" (bi_ra) and the automatic
calculated reduced alphabet through domino bytes (dom_alph), also starting with the "A"
to "z" alphabet. The hit threshold per position was set high, to five-hundred, and the seven
symbols long string "ImpTest" was used. Because of the large alphabet bi_fa did not finish.
bi_ra was executed fast, in under thirty-seven seconds, but with the first position leaked
correctly. The remaining positions have been mostly affected with wrong leakage of the
tirst byte, except for one single correct hit. dom_alph finished in 1619 second and only
0.26% wrong leakage which, as can be seen in figure is a visible improvement. The
4376% longer execution time results from double the amount of byte positions because
of the used Domino-Bytes and the high hit threshold per position. Filtering through the
reduced alphabet also results in fewer bytes being leaked in the same amount of time.
The unfinished run with the full alphabet shows the need for the reduced alphabet, this
has been confirmed by the significant rise in hits with the usage of the reduced alpha-
bet. The amount of wrong leakage at the second position confirms the need for filtering
through the used Domino-Bytes and the dynamically adapting alphabet. The wrong leak-
age when the first byte is included in the leakage alphabet shows that the subsequent
filtering between the first and the second most leaked byte by using the Domino-byte is
useful.

14
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Figure 3.2: Comparison between attack with and without usage of Domino-bytes
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4 Experiment: Evaluation of the Execution Environment

In this section the Performance differences of the attack in the different configurations
of attacker and victim running on the host-system and inside micro-VM are compared.
This experiment is necessary to evaluate the effects of the Firecracker environment and
background noise on the ZombieLoad attack. A reliably detectable recovery of correct
values is needed to perform the data transfer used in Co-location detection.

4.1 Experimental Setup

The correct leakage and runtime per byte position is measured for a leakage threshold
of five-hundred. The leakage threshold is the number of bytes that are recovered per
position. The total time is calculated as the sum of the runtime per byte position, until
the threshold is reached. The string used for testing was "Expl". The correct leakage
was calculated as the average of correct byte ratio at all four byte positions. An starting
alphabet from "A" to "z" is used and the test is repeated for the first two positions of the
string to be leaked and the corresponding domino bytes. The experiment was executed
for every scenario of attacker and victim being hosted in- and outside of the micro-VMs.
Therefore, the four scenarios are:

1. attacker and victim both run on the host system
2. the attacker runs on the host system and the victim runs inside a micro-VM
3. the attacker runs inside a micro-VM and the victim is executed on the host
4. attacker and victim each run in their own micro-VM
To simulate noise of other processes running on the host system, experiments for each of

the four scenarios were repeated with additional application of the tool Stress-ng E

4.2 Experimental Results and Evaluation

In the following section the results from the different threat models with and without
added stress are evaluated.

"Mttps://launchpad.net/ubuntu/+source/stress-ng/0.09.25-1lubuntu?
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4 Experiment: Evaluation of the Execution Environment
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Figure 4.1: Comparison of execution time for each setup.

Simple setup (no stress)

With the attacker and victim both being directly hosted on the host system, the attack
worked slowest with an execution time of 656591ms as clearly visible in figure On
the other hand, the best percentage of wrong leakage was achieved with 0%. The high
amount of correctly leaked bytes is due to no other process running on the same CPU core
and therefore no load instructions for data to the L1 cache that can be leaked.

Moving only the attacker to the micro-VM had an effect of significantly decreasing the
execution time to 21602ms and and increasing the wrong leakage to 5.6%. Moving the
victim to the micro-VM decreased the time even further to 7618ms, nonetheless, the wrong
leakage observed remained at less than 1%.

Executing both participants in separate micro-VMs achieves a wrong leakage percentage
of 2.25% and an execution time of 10757m:s.

While the correct byte leakage is fairly high in every scenario, significant differences in
execution time can be observed when running the attacker and victim on the host system
compared to running one or both of them inside a micro-VM. This can be explained with
the noise produced by the individual micro-VMs. This observation will be supported by
the findings from the experiments with additional stress which are explained hereinafter.

18
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Figure 4.2: Comparison of correct byte leakage for each setup.

Setup with added stress

With stress added, the execution time improved for every scenario compared to the same
experiment executed without stress, except when attacker and victim are run in micro-
VMs: Compared to the execution time 10757ms in the simple setup, the execution of the
attack scenario with additional stress took almost 1.5 times as long (15018ms). Especially
the strong time decrease when both actors are run on the host system and Stress-ng is
added shows, that a certain amount of background noise is likely to improve the speed.
For the previously mentioned scenario in which both are run inside of micro-VMs, the
noise provided through the VMs is already suffictient and the additional noise introduced
by Stress-ng has a negative effect. A possible explanation for this observation is the back-
ground noise affecting the amount of loads to the L1 cache and therefore increasing usage
of the line-fill-buffer and its leakage rate. The negative effect of to much noise could be a
result from to many load instructions, that are not evicting the targeted data of the victim
but only the loaded data from the noise itself.

Adding the tool Stress-ng to each scenario increased the wrong leakage by around 30.9%
on average as displayed in Figure This had to be expected since other data than the
targeted string is loaded to the cache. This is no problem as long as the most leaked byte
in the set of the reduced alphabet is still the correct one, targeted in the attack.

The measurements have not shown any sign for negative effects on the ZombieLoad at-
tack cause by the isolation provided through Firecracker micro-VMs. The loss of correct

19
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leakage through a certain amount of noise can be an desirable trade-off for the improve-
ment of the runtime. Therefore the experiment has shown, that not only the data transfer
between micro-VMs, needed for co-location detection, is possible despite the background
noise, it could even be performed in a shorter runtime because of the background noise.

20



5 Experiment: Threshold Identification for Recovered Bytes
and Runtime Estimation

In this experiment, an attack scenario is simulated with the aim of recovering a string
usable for identification of the victim. The goal of the experiment is to find a threshold
at which it is apparent whether the victim is highly likely to be identifiable or whether
the micro-VM must be restarted to attack another CPU core. The execution time for the
determined threshold is used to calculate the expected value of attempts required and the

time to perform co-location detection for a process on the hardware used.

5.1 Experimental Setup

For this experiment, attacker and victim each are executed in their own micro-VM and
background noise is provided through the tool stress-ng. In the chosen scenario, the
attacker has full control over the victim and is able to execute own code in the attacked
micro-VM. Therefore, the attacker is able to specifically search for an already known
string in the leaked data. In a real threat model this only would be possible if the targeted
victim is also owned by the attacker. It is more likely that an attacker would force a target
to reload something constantly into the L1 cache by, for example, frequently sending the
same web requests. For the sake of simplicity, in this experiment the string known by the
attacker is loaded into the L1 cache multiple times in order to mimic the real-world threat.

Since the string searched for is known, it is possible to use the reduced alphabet starting
at the first index. For this scenario the same victim as before can be used. The used string
is "ExpTwo" and the first three bytes with corresponding Domino-bytes are leaked. The
threshold T" describes the number of leaked bytes from the alphabet to be recovered. It
is decreased from 7' = 500 in steps of fifty until 7" = 150, at which the string cannot
be recovered anymore. The execution time and correctness of recovered bytes are also
measured. The reboot time for a micro-VM was estimated at five seconds.

After identifying a suitable threshold, the chosen threshold is used to estimate the runtime

for the execution of a threat model and to consequently evaluate the feasibility of the

attack in different scenarios.
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Figure 5.1: Comparison of correct byte leakage for different thresholds at each position.
Each color represents a threshold.

5.2 Experimental Results and Evaluation

In the following section, the results from the comparison of different thresholds 7" are
described and evaluated. Furthermore, the total attack runtime is estimated based on a
chosen threshold of 7' = 450 and the measured attack duration from the experiment.

Threshold Identification

For every threshold T > 400 the correct bytes have been leaked. By comparing the leakage
count of the first and second most leaked bytes, it is possible to draw a conclusion regard-
ing the certainty of correctness of the first most leaked byte. It is possible to see that the
most leaked byte for the threshold of 7" = 500 is at its best position being leaked 97.6 times
more than the second most leaked byte. A its worst position, the byte is still leaked 1.39
times more. This is nonetheless enough to detect it as the correct byte, which is validated
through its preceding and following bytes, that got at least 1.7 times more leaks than the
second most leaked byte and therefore imply that with high certainty the correct sequence
of bytes has been leaked.

At a threshold of T' = 350 the attack fails for the fist time at the second Domino-byte: The
correct byte is only being leaked 34% as often as the most leaked one and is therefor only
the third most leaked byte for this position, resulting in a continuation of the error to the
next position. For the following estimation, a threshold of 7" = 450 leaked bytes is chosen,
as it allows the discovery of correct leakage bytes with a high confidence as shown in[5.1}
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5.2 Experimental Results and Evaluation

Runtime Estimation

To estimate the runtime for the execution of a threat model the threshold is set to 7" = 450
as this is high enough for the leaked bytes to not be affected too much by fluctuations in
the measurements of the correct leakage. On this setup the execution of the attack took
about twenty-seven seconds. With the additional reboot time of a micro-VM, one attack
execution would need thirty-two seconds. The used setup uses a CPU with forty virtual
cores. The assumption is made, that for every core, the chance for executing a given micro-
VM is uniformly distributed.

The probability for launching the attack on the right core at least once for a given number
of attempts n can be calculated as follows:

In(l—a)

n> ————=

~ In(l1-p)
with a being the lower bound of probabilities that needs to be achieved and 3 being the

likelihood for launching the attack on the right core.
In order to achieve high confidence of having performed the attack on the correct core
at least once, with a = 0.9999 the lowest required probability is set to 99.99%. With the

probability of launching the attack on the correct one out of ¢ cores

1
p=1--
C

. 1 -1
Bissettol — ;57 =39-407".

Now, the number of attempts can be calculated as follows:

The 364 attempts result in an total runtime of 364-32s = 11648s. This total attack execution
time of 3.2 hours is still shorter than the maximum lifetime that is probably configured for
a micro-VM, the attack execution would therefore be feasible in this scenario. In order to
be executed on a larger scale, more attacking microVMs will be needed, as the estimated
runtime with a second server already would be more than 2.6 times as long and for three
server would increase to over four times the calculated execution time.

This estimate shows that the co-location detection is feasible for a small amount of possible
cores, but for large data centers for which firecracker is designed, the complexity and
runtime quickly exceed the maximum microVM lifetime of one day.
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5 Experiment: Threshold Identification for Recovered Bytes and Runtime Estimation

In a real working environment, this attack would probably only be feasible at the tested
speed if the targeted process is designed to be easily detected. If a regular program is
the target, a much higher threshold will be required until a byte is statistically distinctly
visible. This results in an also significantly higher runtime.

Furthermore, an known identifier such as the given search string in the previous experi-
ment is required. Since Firecracker is designed to scale dynamically for services, which for
instance could handle web requests, a constant part of a request header might be feasible
to use as such an identifier.
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6 Conclusions

In this chapter, the contents of this thesis will be summarized and discussed. Limitations
of the experiments and questions arising from them are outlined.

6.1 Summary

The aim of this work was to examine the impact of Firecracker micro-VMs and an emu-
lated environment onto the ZombielLoad attack and to determine whether it is a feasible
attack to perform co-location detection. In order to do so, an optimized implementation
was suggested to leak all bytes and the corresponding domino bytes. Two main experi-

ments were executed:

1. Multiple threat models using different combinations of host system and micro-VMs
to run the attacker and the victim were compared in terms of the wrong leakage ra-
tion and execution times. Moreover, all scenarios were evaluated with the additional
use of the tool Sress-ng for creating background noise.

2. Different thresholds for recovered bytes were tested in order to determine the lowest
threshold at which it is apparent whether the attacker will likely be successful or
whether the attack has to be relaunched to another CPU core. From the identified
threshold, estimations were made with regard to the total runtime of an attack in
setups with multiple cores on which the target might be running.

In the first experiment, the effects of Firecracker and background noise have been mea-
sured and evaluated. The results show that the isolation through micro-VMs has a neg-
ligible effect on the correct byte leakage and the generated background noise can even
increase the attack performance despite the increase of wrong leakage. The second ex-
periment reveals that by determining the optimal leakage threshold, an estimate of the
time and attempts required to perform a co-location detection, on that specific hardware,
can been calculated. The runtimes estimated indicate that the examined attack present
a realistic threat for the Firecracker environment in case that few cores are being used,
nonetheless the attack runtime rises rapidly with a scaling environment with increasing

numbers of cores.
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6 Conclusions

6.2 Discussion and Future Work

In the experiment chapter [ background noise is added using the tool Stress-ng. Nat-
urally, the background noise in real processes is less random and closely related to the
process running. Therefore, it would be interesting to evaluate the influence of back-
ground noises from different types of applications on the ZombieLoad attack and to
examine the ability to identify the running process from the type of background noise
produced.

The estimated runtime of the co-location detection assumes a uniquely identifiable byte
string at this point, but especially when identifiers like request headers are used, the
chance of overlapping parts of byte strings increases. This is problematic for the exe-
cution of the attack, because a chosen identifier also used in multiple different processes
could trigger a false positive for a detection. This raises the question whether more unique
substrings that can serve as identifiers in more realistic scenarios could be determined.
Furthermore, it would be interesting to see if avoiding common prefixes (e.g. standard
headers in a web request ) and therefore starting the detection not at byte 0 but at a byte
with a higher expected entropy.

The calculated runtime estimate has shown that with multiple CPUs or even a whole data
center the expected time needed for a successful co-location detection increases rapidly.
Therefore the use of multiple attacking processes should be considered. Further research
is required on the topic of orchestrating multiple attacking processes for co-location de-
tection.

Also, the experiments have been performed under controlled conditions, a real working
environment and especially processes loading similar data repeatedly could probably ef-
fect the percentage of wrong leakage negatively or in a unforeseen way. Therefore, exper-
iments on an actual running Firecracker environment would yield interesting insights on
the practicability of the attack.
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