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Abstract

Digital signatures are becoming increasingly important and with the advent of quantum
computers, attackers are gaining access to more and more resources. Therefore, new sig-
nature procedures that are also secure against this type of attack must be developed. Cur-
rent post-quantum protocols are often based on the Multi-Party Computation in the Head
(MPCitH) paradigm, where digital signatures are created using Zero-Knowledge Proofs
(ZKP) and applying the Fiat-Shamir Transformation to get non-interactive protocols. A
novel approach uses Vector Oblivious Linear Evaluation (VOLE) to generate such proofs,
called VOLEitH, and shows significant improvements in complexity and communication
overhead. In this work, we describe the VOLEitH approach in detail. We show how the
protocol is structured and how digital signatures can be created. We also discuss which
countermeasures help to expose a malicious prover. This provides a better understanding
of VOLEitH and helps in future work, as VOLEitH has so far been viewed as a black box.
Using [KKW18] as a representative for MPCitH approaches, we provide a comparison of
the communication costs and computational complexity of VOLEitH to previous MPCitH
protocols. We highlight that MPCitH and VOLEitH have the same structure but take dif-
ferent approaches to create ZKPs. We show the limitations of both approaches, such as
poor scalability and dependencies on circuit size or number of parties, and develop theo-
retical improvements for digital signatures.
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Zusammenfassung

Digitale Signaturen werden immer wichtiger und mit dem Aufkommen von Quanten-
computern erhalten Angreifer Zugang zu immer mehr Ressourcen. Daher müssen neue
Signaturverfahren entwickelt werden, die auch gegen diese Art von Angriffen sicher sind.
Derzeitige post-quanten Protokolle basieren häufig auf dem Multi-Party Computation
in the Head (MPCitH) Paradigma, bei dem digitale Signaturen unter Verwendung von
Zero-Knowledge Beweisen (ZKP) und der Anwendung der Fiat-Shamir-Transformation
erstellt werden, um nicht-interaktive Protokolle zu erhalten. Ein neuartiger Ansatz ver-
wendet Vector Oblivious Linear Evaluation (VOLE), um solche Beweise zu generieren,
VOLEitH genannt. VOLEitH zeigt signifikante Verbesserungen bei der Komplexität und
dem Kommunikations-Overhead. In dieser Arbeit beschreiben wir den VOLEitH-Ansatz
im Detail. Wir zeigen, wie das Protokoll aufgebaut ist und wie digitale Signaturen erstellt
werden können. Wir diskutieren auch, welche Gegenmaßnahmen dabei helfen, einen
böswilligen Prover zu entlarven. Dies trägt zu einem besseren Verständnis von VOLEitH
bei und hilft bei zukünftigen Arbeiten, da VOLEitH bisher als Blackbox betrachtet wurde.
Unter Verwendung von [KKW18] als Repräsentant für MPCitH-Ansätze bieten wir einen
Vergleich der Kommunikationskosten und der Rechenkomplexität von VOLEitH im Ver-
gleich zu früheren MPCitH-Protokollen. Wir heben hervor, dass MPCitH und VOLEitH
die gleiche Struktur haben, aber unterschiedliche Ansätze zur Erstellung von ZKPs ver-
wenden. Wir zeigen die Grenzen beider Ansätze auf, wie die schlechte Skalierbarkeit
und die Abhängigkeit von der Größe des Schaltkreises oder der Anzahl der Parteien, und
entwickeln theoretische Verbesserungen für digitale Signaturen.
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1 Introduction

Signatures are an important part of our daily life and they are also becoming more and
more significant in the digital space. To create trust in signatures, no attacker must have
the ability to forge the signatures of other entities and act on their behalf. With the advent
of quantum computers, modern cryptography faces new challenges, as attackers can ac-
cess significantly more resources and can therefore simply bypass current security mecha-
nisms. An example is Shor’s quantum algorithm [Sho94], which is designed to efficiently
factorise large numbers or to find the Discrete Logarithm and thus break widely used
cryptography, such as RSA or Elliptic Curves. Despite the early stage of development of
quantum computers, their existence should be taken into account and considered when
developing future protocols to be safe against this type of attacker. Previous approaches
use Multi-Party Computation (MPC) to create Zero Knowledge Proofs (ZKP) and estab-
lish signatures on top of them, using the Fiat-Shamir Transformation (FS). To build ef-
ficient ZKPs, the prover splits his secret and simulates all parties of the MPC protocol
“in his head“. This framework is called MPC in the Head (MPCitH) and was first intro-
duced by [IKOS07] in 2007. Since then, many optimisations have been developed and
the first MPCitH signatures have been standardised. In 2023, [BBdSG+23b] introduced
a novel approach that realises digital signatures based on Vector Oblivious Linear Eval-
uation (VOLE), called VOLEitH. The authors of the paper establish a direct connection
between MPCitH and VOLEitH and note that their approach is up to two times faster
than previous MPCitH protocols.
Through years of development and improvement of MPCitH protocols, there is a very
good understanding of the approach and the associated limitations. Since VOLEitH is
still very new, such elaboration is missing and previous optimisations focus primarily
on improvements to individual building blocks and cryptographic primitives, but do not
attempt to understand or improve the structure of VOLEitH. Therefore, this work aims
to explain the VOLEitH approach and classify it into existing post-quantum signatures
based on ZKPs. We will look in particular at the structure of the individual rounds of the
protocol, highlight the countermeasures for detecting cheating provers and present a com-
parison of MPCitH and VOLEitH. This comparison serves to build a good understanding
of post-quantum signatures and highlight bottlenecks. We then use this understanding
to present theoretical improvements to digital signatures. We describe the ideas and their
effects on communication overhead, computational complexity and security.
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1 Introduction

1.1 Related Work

In this part, we want to take a closer look at related work and highlight the differences in
this elaboration.

Improved all but one Vector Commitment. In 2024, [BCdSG24] published an improve-
ment on all but one Vector Commitment, which does not use the Random Oracle assump-
tion, but a random permutation oracle. Such an oracle can be instanced using fixed key
AES and thus has hardware support. This leads to smaller and faster signing and verifica-
tion times. In addition to that, a more efficient way to create all-but-one Vector Commit-
ments called the half-tree technique [GYW+23], is used and leads to better efficiency.
In this work, we are not concerned with improving individual building blocks, such as
Vector Commitments, within the protocols, but want to consider whether the basic struc-
ture of MPCitH and VOLEitH can be adapted to achieve improvements for signatures.

FAESTer. Building on the VOLEitH signature FAEST, which is presented in Section 4.2.2,
[BBM+24] showed how to improve the performance by applying a new Vector Commit-
ment scheme, called batch all but one Vector Commitments (BAVC). In addition, a new
strategy is presented to reduce the entropy in the proof and thereby improve the signa-
ture size known as “grinding“ [Sta21]. Using such BAVCs and grinding in the FAEST
mechanism results in a more efficient protocol, called FAESTer. Furthermore, the authors
consider other OWFs, in addition to AES, namely Rain and Multivariate Quadratic (MQ),
which also use the new improvement of BAVC.
The goal of FAESTer is to improve FAEST and apply other OWFs, besides AES. The au-
thors also consider how these changes affect complexity and thus ensure optimisations
in digital signatures, which is also the goal of this work. We, on the other hand, want
to look at the general VOLEitH and MPCitH protocols and make changes based on the
general structure of both frameworks. FAEST and FAESTer are very optimised protocols
and therefore less generalisable.

VOLEitH Signature from Multivariate Quadratic. Multivariate quadratic (MQ) is a
cryptographic assumption and serves as the basis for a variety of protocols, including
signatures. In MQ, a system F : Fn

p → Fm
p of m quadratic polynomials in n variables

over some field Fp is used. For a uniformly random system F : Fn
p → Fm

p of m and some
x ∈ Fn

p , the MQ problem is to find x given F and F(x).
Based on the Rainbow signature scheme [DS05], which is also built on MQ, [Bui24] now
shows how to adapt the Quicksilver protocol to use such a system of quadratic polynomi-
als and thus realise the adjustment to the VOLEitH approach. To do that, they first present
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1.1 Related Work

the publicly verifiable zero-knowledge protocol based on MQ over any finite field Fp and
describe the transformation, using Fiat-Shamir, to build the final signature. Furthermore,
they present an improvement in Vector Commitments.
The authors present an improvement of the VOLEitH protocol using a different assump-
tions, Multivariate Quadratic. In our work, we do not use any additional cryptographic
assumptions but rather try to optimise based on the previous protocols and their crypto-
graphic framework.

Improvement PERK Signature. PERK [ABB+23] is a digital signature scheme that
builds on the MPCitH paradigm and thus provides security, even against post-quantum
attackers. In 2024, the PERK team shared ongoing work to improve the underlying Per-
muted Kernel Problem (PKP) using the VOLEitH proof system [PER24]. This results in
smaller and faster signatures at the same security level.
Unfortunately, this is still an ongoing work and at this point, there are no final results
presented, which could be useful for this work. But the basic idea is the same, adjustments
to Perk’s MPCitH approach to be able to calculate more efficient signatures. In contrast,
we look at the [KKW18] protocol, which is also an MPCitH protocol but is structured
fundamentally differently.

Threshold Computation in the Head. An important part of most of the MPCitH imple-
mentations is secret sharing. Improving such sharing results in more efficient protocols.
The Threshold Computation in the Head (TCitH) framework [FR23] introduces a new ap-
proach called “batch secret sharing“ that uses GGM Trees [GGM86], resulting in much
lower communication overhead and reduction in computational complexity. The most
interesting part of this work is the provided comparison between the new TCitH frame-
work and VOLEitH. The authors show, that VOLEitH can be seen as a specific application
of TCitH, which suggests that MPCitH and VOLEitH can be combined or could even re-
place each other.
This paper comes very close to our work because it tries to fundamentally improve
the MPCitH approach by using GGM Trees. The first major component of our work is
the description of the VOLEitH approach and the comparison with previous MPCitH
approaches. TCitH goes beyond this and shows that certain instances of TCitH, i.e. a
MPCitH approach, can also be represented as VOLEitH protocols. Therefore, our work
is more focused on comparing the frameworks and only deals with optimisations very
superficially, while TCitH provides practical approaches to make MPCitH approaches
much more efficient.

3



1 Introduction

1.2 Contributions

The results of this work are threefold. First, we describe the idea behind VOLE corre-
lations and provide a detailed description of the VOLEitH approach. We then compare
VOLEitH with MPCitH to highlight bottlenecks and possible improvements. Finally, we
describe modifications to the [KKW18] protocol, a very efficient MPCitH approach, to ap-
ply new techniques from VOLEitH and thus achieve theoretical improvements in digital
post-quantum signatures.

Description of the VOLEitH approach. Vector Oblivious Linear Evaluation is a special
form of Oblivious Transfer (OT). Two parties, called sender and receiver, learn a common
VOLE correlationQQQ = VVV +UUU ·∆, where the sender knowsUUU andVVV and the receiver knows
QQQ and ∆. At the end of the protocol, the receiver learned the VOLE correlation without
publishing its own and the sender’s secret inputs. To gain an understanding of the use
of such correlations in Zero-Knowledge Proofs, we describe in detail the path from OT to
SoftSpokenOT, which forms the basis for the subspace VOLEs used in VOLEitH.
The problem with previous VOLE-based ZKPs is the designated verifier scenario. The
verifier has to keep a secret state, namely his part of the VOLE correlation, that the prover
cannot learn to ensure the soundness of the proof. This means that the proof is not pub-
licly verifiable and therefore cannot be used for signatures. To overcome this problem,
[BBdSG+23b] introduced VOLEitH. In this work, we describe the VOLEitH protocol in
detail. We will look at the individual rounds and their effects within the proof. We also
look at the possibilities of a (malicious) prover and show which countermeasures are avail-
able in the protocol. This provides a detailed understanding of VOLEitH and thus helps
to improve future research, as previous work has mostly used VOLEitH as a black box.

Comparison of MPCitH and VOLEitH. One goal of this work is to improve digital post-
quantum signatures. Previous protocols used the MPCitH approach, which enables the
creation of signatures on Multi-Party Computation protocols. To have a good starting
point for optimisations, we describe the previous MPCitH approach and compare it with
VOLEitH. We look in particular at the [KKW18] protocol, which implements the MPCitH
approach very efficiently through many optimisations, and FAEST, the first VOLEitH-
based signature. We describe the computational complexity and the communication used
by the underlying protocols and highlight existing bottlenecks. Furthermore, we show
that the basic structure of MPCitH and VOLEitH is similar, but both protocols use funda-
mentally different approaches to create digital signatures. MPCitH is based on the simula-
tion of an MPC protocol “in the head“ of the prover, while VOLEitH realises mathematical
correlations through VOLEs.
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1.3 Overview

Modifications. In the final part of this work, we use the previous descriptions of the
protocols and the highlighted bottlenecks to make improvements to digital signatures. To
do this, we provide a high-level description of changes to the protocol we deem necessary
as well as how these changes effect the computational complexity, communication and
security of the protocols.

1.3 Overview

In the following Chapter 2 we deal with the basics required for this work. We will focus on
cryptographic primitives and methods for creating digital signatures. Building on this, we
describe in Chapter 3 the idea of Vector Oblivious Linear Evaluation and the connection
between Oblivious Transfer and VOLE correlations. Chapter 4 explains in detail the Multi-
Party Computation in the Head and the VOLE in the Head approach. We describe the
idea of both protocols and how efficient signatures can be created based on them. These
are then compared with each other in Chapter 5 and bottlenecks are highlighted. We
particularly consider the communication effort of both approaches and the computational
complexity for the prover and verifier. In Chapter 6, we present a few optimisations that
can be used to improve the MPCitH approach, which particularly draws on ideas from
VOLEitH. In Chapter 7, we summarise our work and describe some open problems.

5





2 Preliminaries

This chapter introduces some basics that are needed to understand this work in more
detail. The focus relies on some notations, cryptographic primitives, like Zero-Knowledge
Proofs or One-Way Functions, and basic concepts, such as Multi-Party Computation or the
Fiat Shamir Transformation.

2.1 Notations

Vectors and Matrices. In this work we denote a vector by lowercase bold letters xxx and
its elements by xxxi. The index of a vector can also be a range [i, ..., j] with i ≤ j. So with
xxx[i,...,j] we address the elements xxxi, xxxi+1 until xxxj . For matrices, bold capital letters are used,
so that a m× n matrix UUU has m rows and n columns. The element ui,j with i ≤m and j ≤
n is the value in the i-th row and the j-th column of UUU . The i-th row and the j-th column
vector of UUU will be denoted by uuui and uuuj respectively. By using UUUa,...,b, we denote the
concatenation of the row vectors uuui for a ≤ i ≤ b. For a given vector xxx = (x1, x2, ..., xn),
diag(xxx) denotes the diagonal matrix using xxx on the diagonal, i.e.

diag(xxx) =


x1 0 ... 0

0 x2 ... 0

... ... ... ...

0 0 ... xn

.

Ideal Functionalities. An Ideal Functionality is a theoretical construct used to define
the security properties of an cryptographic protocol [DDM+06]. If the real execution of
the protocol is indistinguishable from an Ideal Functionality, the attacker cannot learn
anything. In this work, Ideal Functionalities are used to interact with parties and calculate
their secret inputs. In contrast to Trusted Third Parties, an Ideal Functionality can also per-
form further calculations on the secrets, which is especially needed to build correlations
between the inputs. We will denote an Ideal Functionality as F . In order to distinguish
the individual Functionalities, the respective index indicates the cryptographic primitive
to which the functionality relates. The exponent indicates all the parameters that the Ideal
Functionality needs for the calculations, such as field size or matrix dimensions.

7



2 Preliminaries

Linear Codes. A [nC ,kC ,dC]p linear Code C is a k-dimensional subspace of FnC
p , where

nC denotes the length and dC the minimal distance of the code. The distance between two
codewords is calculated by the Hamming Distance. Note that we use the subscript C to
show that these elements belong to the linear code C and thus can be distinguished from
other variables and matrices. Each linear code has a generator matrix, GGGC ∈ FnC×kC

p , i.e. its
rows are a basis for C as a linear subspace. We define TTT C ∈ FnC×nC

p as an extension of GGGC ,
such that the first kC rows are from GGGC and the remaining rows are chosen so that TTT C is
invertible and forms a basis of FnC×nC

p . This will be used later to extract the information
embedded in the code. Furthermore, given a matrix AAA ∈ Fn×kC

p and an [nC ,kC ,dC]p linear
Code C, the embedding of AAA inside the code C will be denoted by the n× nC matrix C(AAA),
such that C(AAA) =GGGC ·AAA.

Repetition Codes. Repetition Codes are simple linear error-correcting codes which re-
peat the message several times and thus realise a correct transmission over a noisy chan-
nel. Repetition codes can also be parameterised with [n, k, d], similar to linear codes. For
a given repetition parameter τ , each bit in the original message is repeated τ times. Thus,
a repetition code [τ, 1, τ ] consists of one information bit which is repeated τ times.

Negligible probability. A function negl is called negligible if it grows slower than the
inverse of every polynomial function. More formally, negl(λ) ≤ 1/λc for all c and all suf-
ficient large λ. Negligible functions are mostly used in security games for cryptographic
primitives where they are used to upper bound the advantage of adversaries. Further-
more, if the advantage of a given adversary against some protocol is negligible, this means
that the protocol is secure against the adversaries attack strategy.

Probabilistic Polynomial Time. An Probabilistic Polynomial Time (PPT) algorithm is
an algorithm that runs in polynomial time, w.r.t. the input size, and uses randomness.
Such an algorithm can produce different outputs on the same input. In addition, the error
for an incorrect result is bounded. In this work, PPT algorithms are needed to model
participants in protocols, such as sender and receiver, and to be able to show the security.

2.2 Zero-Knowledge Proofs

Zero-Knowledge Proofs (ZKP) are two-party protocols between a prover P and a verifier
V . The idea is quite simple: For a given language L , a public input x and an NP-relation
R, the prover wants to convince the verifier that he has a witness w that proves that x ∈ L

with (x,w) ∈ R, without revealing w to the verifier. The concept of ZKP was first intro-

8



2.3 Hash Functions

duced by Goldwasser, Micali, and Rackoff in 1985 and is nowadays a fundamental build-
ing block in cryptography [GMR85]. For such protocols, we consider three properties:

• Correctness - if P really knows a witness w, then V should always be convinced.

• Soundness - if a malicious prover P∗ does not know a witness w, then V accepts
only with a small probability.

• Zero-Knowledge - if a malicious verifier V∗ tries to learn anything from the interac-
tion with P , he is not able to extract additional information.

Notice, that the soundness error only has to be small, but not necessarily negligible. To
achieve a negligible soundness error, one can just run the protocol multiple times and
thus reduce the error. To prove that a system ensures zero knowledge, a simulator Sim,
who does not know the real witness w, can be built. The idea is that the output of Sim
is indistinguishable from the distribution of the transcript of the protocol run by P and
V∗. In other words, if the attacker can not distinguish whether he is interacting with
the simulator Sim or the real protocol, he can not learn anything from the protocol. The
transcript denotes the interaction between the prover and the verifier.

2.3 Hash Functions

A hash function H describes a function that compresses a string of arbitrary input length
to a string of fixed length, i.e. H : {0, 1}∗ → {0, 1}n. A set of hash functions is also called
a family of hash functions. To realise secure protocols and to apply such functions to
concrete cryptography, cryptographic hash functions with the following properties are
necessary [SG12]:

• Collision resistance means that finding any two inputs that generate the same out-
put is hard.

• One-way-ness, also called Pre-Image resistance, denotes that knowing y, finding x

such that H(x) = y is hard.

• Second Pre-Image resistance, also called weak collision resistance, signifies that
knowing a pair x and y, with H(x) = y, finding x′ such that x ̸= x′ and H(x′) = y is
hard.

In this work, Collision Resistant Hash Functions (CRHF) are needed to understand the
construction of Vector Commitments by [BBdSG+23b]. Such hash functions fulfil the col-
lision resistance property.

9



2 Preliminaries

Another special form of non-cryptographic hash functions are universal hash functions
[CW77]. A family of hash functions is universal if, for a hash function H , which was
picked at random from the family, the probability that two distinct keys refer to the same
hash value is bounded. More mathematically, for a given family of hash-functionsHwith
H ∈ H : U → R and all x, x′ such that x ̸= x′, the probability Pr[H(x) = H(x′)] is
bounded by 1/|R| [BKST15]. Furthermore, if the probability is bounded by some ϵ, i.e.
1/|R| ≤ ϵ < 1, then H is an ϵ-almost-universal family of hash functions.

2.4 Security Models

To prove the security of protocols, the Common-Reference-String (CRS) and the Random
Oracle Model (ROM) are often used. In the CRS model, a random string is chosen and
shared with all participants in the protocol. All the parties can use this string inside the
protocol. Thus, the CRS model facilitates protocols where parties can prove knowledge of
certain information without revealing the information itself.

The Random Oracle Model is a theoretical framework and assumes the existence of an
idealised function that responds to every unique query truly random. This allows proving
the security of a protocol under ideal conditions [Ble11]. In reality, hash functions are used
to replace the ROM. In this case, the hash functions respond to the requests to the ROM
by producing and returning completely random hashes. Due to the use of cryptographic
hash functions, this output cannot be distinguished from true randomness.

The CRS+RO model now combines both approaches to be able to make useful security
assumptions and provide security evidence. For this, it is assumed that all parties have
access to a CRS and a random oracle.

To build Zero Knowledge Proofs in the combined CRS+RO model, Baum et al. present a
two-phase protocol consisting of a setup phase and the proof itself concerning a Random
Oracle H [BBdSG+23b]. An interactive Zero-Knowledge Proof system Π for NP relation
R is a tuple Π = (SetupH , PH , VH ) of PPT algorithms:

• SetupH gets the security parameter λ as an input and returns a common reference
string (crs).

• PH now interacts with VH and both parties receive the crs and a common input x.
The private input of PH , the witness w, is chosen such that (x, w) ∈ R. The verifier
outputs a bit b = 1, if he accepts, or b = 0, if he rejects.

Later on, it will be assumed that the prover and the verifier got access to the common
reference string and the random oracle H and it is not explicitly mentioned.
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2.5 Commitment Schemes

A Commitment Scheme (CS) is a cryptographic primitive and was first introduced by
Brassard et al. in 1988 [BCC88]. The idea is to allow one to commit to a specific value
and send it to other parties. These parties are unable to extract the original value until
the sender of the commitment opens it, this is called the hiding property. Additionally, a
CS satisfies the binding property, which means that after sending the commitment to the
other parties, one can not change the value which was committed. Such protocols can be
formalised with two phases, the commit phase and the reveal phase.

A simple example is a coin-toss scheme, where Alice flips a coin and Bob wants to guess
the result. Bob sends his guess b hashed with a cryptographic hash function H and a
random string r, i.e. H(b || r), to Alice. Alice now flips the coin and sends the result to
Bob. Bob now “opens“ his commitment by sending H and r to Alice, who now sees the
guess b. The Commitment Scheme is hiding, since a cryptographic hash function is used.
This hash function fulfils the pre-image resistance property and thus is hiding the input.
The commitment is binding, since such hash functions are collision resilient, so there is just
one possible hash for each input. Commitment Schemes can be used in many applications,
for example, Zero-Knowledge Proofs [GMW91] or signature schemes [Lam79].

2.5.1 Vector Commitment Schemes

Vector Commitments (VC) are Commitment Schemes on vectors instead of single values.
They can be formalised as a two-phase protocol between two PPT machines, called sender
and receiver. In the commitment phase, the sender commits to a vector of messages while
keeping them secret. In the revealing (decommitment) phase, the receiver opens a subset
of indices of the commitment. Such Vector Commitments also satisfy the binding and
hiding property but with an extended hiding property, since the VC has to ensure that
unopened indices are hidden, even after opening a subset of indices.

Baum et al. define their Vector Commitment with respect to the Common Reference String
and Random Oracle Model [BBdSG+23b]. For a given Random Oracle H and a message
spaceM, a (non interactive) Vector Commitment can be described by the following PPT
algorithms:

• SetupH receives a security parameter λ and a vector length N = poly(λ) as input. It
outputs a common reference string, which can be used by the sender and receiver.

• CommitH,crs gets the crs as input and outputs a commitment com and its opening
information decom for messages (m1, ..., mN ) ∈MN .

11
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• OpenH,crs receives the indices I ⊆ [N ] of commitments the receiver wants to open,
the crs and the opening information provided by CommitH,crs. It outputs the open-
ings decomI .

• VerifyH,crs finally checks if the openings decomI match the commitments provided
by com. For this it gets access to the crs, com, decomI and I itself. VerifyH,crs either
output the messages (mi)i∈I if the opening was correct or ⊥ if it was not.

Such VCS can be constructed and are secure in the CRS+RO model. The Vector Commit-
ment is (perfectly) correct if for all random oracles H , all security parameters λ ∈ N and
for all N = poly(λ) the verify algorithm outputs the messages (mi)i∈I for I ∈ [N ] if com
received by Commit and decomI obtained by Open are consistent. To show that such a con-
struction is binding, Baum et al. present a security game where the adversary chooses the
commitments and the protocol gets an extract functionality for a given trapdoor function
and the queries that were made by the adversary. The attacker is successful if he sends
correct decommitments that pass the Verify algorithm, but that are not equal to the ex-
tracted messages by the protocol. In other words, the attacker wins if he can produce a
commitment which has more than one decommitment. Such constructions are hiding if
the attacker loses the real or random game for this VC. For this, the protocol chooses ran-
dom commitments com for messages (m∗

1, ..., m∗
N ). The attacker receives the crs and the

commitment. Now he chooses I ⊆ [N ] and sends it to the protocol. The protocol sets all
mi for i ∈ I to the real value m∗

i . If the choice bit b = 0, all other values mi, i /∈ I , also get
the real value m∗

i , but if If b = 1 all other values mi, i /∈ I , are random elements fromM.
The attacker now gets all messages (mi)i∈[N ] and decomI . The attacker wins if his guess
b∗ = b, otherwise, he loses. Both security games are depicted in Figure 2.1. Notice, that the
protocol is hiding and binding if the advantage of the attacker is negligible. Such Vector
Commitments are later used in the VOLE in the Head construction in Section 4.2.

2.5.2 Tree-PRG Vector Commitments

Tree-PRG Vector Commitments can be used to realise all but one opening. That means, for
a commitment of length N , exactly N−1 indices can be selected to be opened by the sender
without losing security. To realise such protocols, [BdSGK+21] uses a so-called GGM Tree
of length-doubling PRGs [GGM86]. The idea behind the GGM construction is, that there
is a PRG which takes a binary input of length n and outputs a binary string of length
2n, which can be split up into two new seeds of length n. Repeating these algorithms
allows one to create many seeds based on one string of length n. More technically, a given
PRG: {0,1}n → {0,1}2n takes a seed k and outputs PRG(k) = PRG0(k) || PRG1(k), where
PRG0(k) denotes the first n bits and PRG1(k) the second n bits of PRG(k). This can be used

12
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Protocol Adversary A

com←AH(1λ, crs)

com

(m∗
1, ..., m∗

N )← Ext(td, Q, com)

((mi)i∈I ,decomI , I)←AH (open)

((mi)i∈I ,decomI , I)

if: Verifycrs
H (com, decomI , I) = (mi)i∈I

∧mi ̸= m∗
i : success

else: failure

(a) (Extractable) Binding security game for a given trapdoor function td and its extractable function
Ext using the set of queries Q, which were placed by A to H . At the beginning, there is a setup
phase which creates the crs and the td, i.e. (crs, td)← TSetupH (1λ, N ).

Protocol Adversary A

b∗← {0,1}

(com, decom, (m∗
1, ..., m∗

N ))← CommitHcrs

com

I ←AH(1λ.crs, com)

I

mi ←m∗
i for i ∈ I

for i /∈ I :
if b∗ = 0: mi ←m∗

i

if b∗ = 1: mi ← random fromM

((mi)i∈I

b←A((mi)i∈N ,decomI)

b

if: b = b∗: success
else: failure

(b) Hiding security game for a given set of messageM. At the beginning, there is a setup phase
which creates the crs, i.e. crs← SetupH (1λ, N )

Figure 2.1: Depiction of the (extractable) binding and hiding security game for Vector
Commitments used in [BBdSG+23b]. In both cases, N denotes the amount
of messages that are committed and N = poly(λ).
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k00

k10 k11

k20 k21 k22 k23

kd0

m0 com0

kdj

mj comj

PRG0(k00) PRG1(k00)

PRG0(k10) PRG1(k10) PRG0(k11) PRG1(k11)

G0(kd0) G1(kd0) G0(kdj ) G1(kdj )

Figure 2.2: The GGM construction for a given seed k ∈ {0, 1}n a PRG: {0,1}n→ {0,1}2n and
a collision-resistant hash function G: {0, 1}λ → {0, 1}λ × {0, 1}2λ. The j-th ele-
ment at depth d is denoted by kdj . The GGM extension for Vector Commitments
is highlighted in colour.

to build Vector Commitments as described in [BBdSG+23a], by extending the tree leafs kdj
with a collision-resistant hash function G into two values, the message mj that is used for
the commitment and the commitment comj . A visualisation of the GGM construction and
this extension is shown in Figure 2.2.

To publish a commitment it suffices to publish the hash of com0, com1, ..., comn−1. The
tree keys kij and all comj are stored as decommitment information. To open N − 1 com-
mitments, open generates a partial decommitment consisting of all siblings of GGM keys
on the path between k00 and kdj∗ , with j∗ denoting the message that is not opened. Notice,
that all messages can be reconstructed except the seed for message j∗, i.e. sdj∗ . Further-
more, the partial decommitment contains comj∗ which can later be used to verify that all
elements between k00 and kdj∗ are well formed. To now verify the openings, an algorithm
reconstruct is used. Reconstruct takes the message j∗ and the partial decommitment re-
ceived by open. It now reconstructs all tree leafs kdj for j ∈ [0, ..., 2d) except for j∗, which
were stored in the commitment phase, recomputes all comj and hashes them. The output
then contains all hashes and the leaf keys. Note that verify only has to call reconstruct and
compare the hash received by reconstruct with the commitment received before.
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2.6 One-Way Functions

In today’s cryptography, the existence of One-Way Functions (OWF) is a fundamental
assumption, as they enable the construction of various cryptographic primitives, such as
Signatures, Symmetric Encryption, or Pseudo-Random Generators. The basic idea is that
for a given One-Way Function f and a value x, it is easy to compute f(x) = y but the
other way around is hard, so it is hard to find a x′ such that f(x′) = y. Easy to compute
describes in this context that there is a polynomial-time algorithm that outputs f(x) for a
given input x. In contrast, hard means that the probability that for a given function f and
its result y finding an input x′ such that f(x′) = y is negligible [Gol01].

OWFs can be used to build efficient zero-knowledge protocols. The prover wants to con-
vince the verifier, that he knows the value x, such that f(x) = y. Based on the above
properties, the verifier can easily validate that this is a valid instance. Finding efficient
and secure OWFs is a way to optimise Zero-Knowledge Proofs.

2.7 Multi Party Computation

Secure Multi-Party Computation (MPC) describes a subfield in cryptography, which deals
with the computation of functions based on secret inputs held by different parties, with-
out revealing their inputs themselves. The concept of MPC was introduced by Gold-
wasser, Ben-Or and Widgerson in 1988 [BGW88] and independently Chaum, Crépeau and
Damgard presented their idea of secure computation [CCD88].

General Structure. A simple example for Multi-Party Computation is the millionaires
problem: Three millionaires want to compute the sum of their total assets without reveal-
ing their assets. To achieve this, the first millionaire adds a random value to his wealth
and sends it to the next one who adds his value. After sending it to the third who does the
same, the first millionaire receives the result, subtracts his random value and publishes
the final result. More generally speaking, in a Multi-Party Computation protocol there
are N parties P1, ..., PN with individual secrets si that each party wants to keep private.
All parties got access to a shared functionality f , which takes N inputs and returns a sin-
gle output to all participating parties. The parties now want to compute y = f (s1, ..., sN )
without revealing si, besides what can be learned from y.

To realise meaningful Multi-Party Computation protocols, correctness and input privacy is
needed. To define those properties, we assume there is an adversary A, who controls a
subset of parties. In the first step, these parties participate semi-honestly (honest but curi-
ous) in the protocol, which means that they follow the protocol but try to obtain additional
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information about the other parties’ secrets. So for a given Multi-Party Computation pro-
tocol:

• Correctness ensures that any subset of controlled parties by A should not be able to
force honest parties to output an incorrect result.

• Input privacy formalises that no information about the secrets held by the honest
parties can be inferred by the execution of the protocol.

This can be extended, such that the parties also can act maliciously, so they can arbitrarily
deviate from the protocol. Correctness can be achieved in two ways, either the protocol
can guarantee that the honest parties always output the correct result or there is a way
to observe if something went wrong. Then the honest parties could abort the current run
and restart the protocol.
Notice, that input privacy just ensures that the adversary can not obtain information by
the execution of the protocol, which means communication between the parties, but the
attacker could get additional information by the result. Since all parties got access to
the result, this is not an advantage for the attacker to disturb the privacy of the input.
We call a protocol t-private if it preserves input privacy against t adversarial colluding
parties, t < N . Back to the millionaire problem, this protocol ensures t = 1 privacy, since
one adversarial party can not find out the assets of the other two parties caused by the
random value. Such privacy proofs can be formalised using a simulator, which simulates
the honest parties without knowing their input. The simulator gets the final result of the
function f and the input of the adversarial parties. Then he carries out the protocol: if the
adversary is not able to distinguish between the real protocol execution and the simulator
execution, he can not learn anything about the input of the honest parties. In other words,
an MPC protocol ensures input privacy, if an adversaryA can not distinguish between the
real and ideal world [BPW04].

MPC with Circuits. Most of today’s Multi-Party Computation protocols consider the
function f as an arithmetic circuit operating over some finite field F, using only addi-
tion (⊕) and multiplication (⊙) gadgets. For each gadget, there is a unary and binary
version, the unary one takes one input by a party and a fixed constant α as the second
input. In the binary setting, two parties want to calculate a function based on their inputs.
Each party P1, ..., PN now gets a copy of the circuit. The problem is, that the party Pi just
know its input xi, but not the other inputs. To overcome this problem, Pi has to share
its input xi into N values denoted by x

(1)
i , ..., x(N)

i . To ensure the privacy of xi itself, it
has to be ensured that N − 1 shares do not reveal any information about xi, which can be
realised through a additive or polynomial sharing. To share a value in the additive sharing,
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the elements x
(1)
i , ..., x(N−1)

i are drawn completely random from F. The final share x
(N)
i

is chosen, such that the addition of all shares x
(j)
i equals xi. In the polynomial sharing,

coefficients a1 to an are chosen completely random from F and the coefficient a0 contains
the secret xi. Based on these coefficients, the following polynomial can be constructed:

p(y) =
n∑

i=0

ai = xi + a1y + a2y
2 + ...+ any

n

A sharing for party j can then be computed by evaluating the polynomial on input j,
i. e. p(j). Later on, polynomial interpolation can be used to reconstruct p(0) = xi. One
example of interpolating polynomials is the Lagrange interpolation.
The idea for realising MPC protocols can be summarised as follows: Each party shares
its secret xi with additive or polynomial sharing and sends the jth share x

(j)
i to party j.

After that, all parties perform a gate-wise computation on their local copy of the circuit.
Each party now holds a valid sharing of the result of f , so all parties communicate their
result-sharings and can reconstruct the final output.

BGW. The BGW protocol, presented by Ben-Or, Goldwasser and Widgerson, uses this
approach based on a polynomial sharing for t ≤ ⌊(N − 1/2)⌋ [BGW88]. Each party com-
putes a sharing of its secret xi of degree t, denoted as JxKt, and sends x(j)i to party j. Now
it just needs to be specified, how the different gadgets are realised:

• The unary addition gadget takes a sharing x(i) and a constant α as input and returns
z(i) = x(i) ⊕ α for the values x(1), ..., x(n) that are hold by the parties.

• The unary multiplication gadget takes a sharing x(i) and a constant α as input and
returns z(i) = x(i) ⊙ α for the values x(1), ..., x(n) that are hold by the parties.

• The binary addition gadget takes a sharing x(i) and a sharing y(i) from another party
as input and returns z(i) = x(i) ⊕ y(i) for the values x(1), ..., x(n) and y(1), ..., y(n) that
are hold by the parties.

• The binary multiplication gadget takes a sharing x(i) and a sharing y(i) from another
party as input and returns z(i) = x(i) ⊙ y(i) for the values x(1), ..., x(n) and y(1), ..., y(n)

that are hold by the parties.

For the first three gadgets it is easily to see that they produce the correct output, since
Jz(i)Kt = Jx(i) ⊕ αKt respectively Jz(i)Kt = Jx(i) ⊙ αKt and Jz(i)Kt = Jx(i) ⊕ y(i)Kt holds. For the
binary multiplication, this is not trivially the case, since a multiplication of two polynomi-
als of degree t results in a polynomial of degree 2t. If these polynomials are then used in
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further binary multiplications, they can also achieve much higher degrees. If the degree of
the polynomial is greater or equal then N , the polynomial sharing can not be interpolated
and we lose information meaning the results can not be retrieved from the shares. The
rough idea to solve this is that each party creates a sharing of its result share z(i) of degree
t. So, each party i now has a new sharing Jz(i)Kt = (z(i,1), z(i,2), ..., z(i,n)) and sends z(i,j) to
party j. They now compute:

ζ(i) =
n∑

j=1

λjz
(j,i),

where λj are just the elements of the first row of the inverse Vandermonde Matrix. The
elements (ζ(1), ..., ζ(n)) now form a valid sharing of degree t and JζKt = Jx · yKt
This construction can be proven to ensure t-privacy by building a simulator Sim. The
rough idea of the simulator is the following: Sim generates random values to be the secrets
of the honest parties that he simulates. Then the simulator follows the protocol until the
shares of the result y have to be exchanged. The simulator then gets access to the real result
y and the shares held by the corrupted parties. Sim builds a valid sharing that generates
y and contains the shares of the adversary. The simulator then broadcasts the final shares
he has chosen for the honest parties.
An adversary A can not distinguish between the real execution of the protocol and the
execution simulated by Sim, since he only controls t parties and the secrets si are shared
with polynomials of degree t. As t+1 shares are necessary to reconstruct a polynomial of
degree t, such an attacker is not able to reconstruct the secrets based on the shares and can
not distinguish between the real secrets and the random values. Even inside the protocol,
the attacker can learn nothing by the communication with the parties, based on the fact
that the unary gadgets respectively the binary addition can be computed locally and the
binary multiplication uses a fresh sharing. So until the final broadcast step, the attacker
learns nothing. In the final step, it just has to be ensured that Sim constructs a valid sharing
of y. This is possible since the simulator has access to t shares held by the adversary and
the real result y. Based on this he can create a valid sharing of y with degree t.
Notice, that throughout the above described protocol execution the t parties controlled by
A are semi-honest. It can be shown that this construction can be adapted to fit in the fully
malicious scenario, where those parties can deviate arbitrarily from the protocol. This is
not considered in this work as the semi-honest construction suffices for our use-case. We
will use BGW later on to show, how Zero-Knowledge Proofs can be built using MPC. This
is described in more detail in Section 4.1.
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2.8 Signature Schemes

A signature scheme can be used to validate the sender of a given message. To realise
that, most of today’s signatures work with asymmetric cryptography, meaning the sender
owns a key pair consisting of a public and a private key. He now uses the private key to
produce a signature for a given message and sends it to the receiver, who can then use the
public key to verify the signature. Such schemes can be described by the following three
algorithms:

• Key generation. This algorithm outputs a public and private key pair. To do this, a
private key is selected at random from a set of possible private keys and outputs the
key itself and the corresponding public key.

• Signing. Sign takes the message m, which has to be authenticated, and the secret
key and outputs the signature for m.

• Verification. Verify receives the signature, the public key and the message that pro-
duced the signature, and accepts or rejects the authentication.

The concept of signature schemes was originally introduced by Diffie and Hellman in
1976 [DH76]. Since then a lot more signatures have been invented, like RSA [RSA78],
Lamport signatures [Lam79] or Merkle signatures [Mer79]. In this work, the focus relies
on understanding how to build signatures based on MPCitH and VOLEitH and how to
improve signature schemes.

2.9 Fiat-Shamir Transformation

In 1986, Fiat and Shamir introduced the idea of Random Oracle Models and showed how
to make interactive protocols non-interactive using such a ROM [FS86]. This approach
is called Fiat-Shamir Transformation. For the transformation to be applied, the protocol
must satisfy the public coin property, meaning that one party only sends random coins.
In the context of Zero-Knowledge Proofs, public coin means that the verifier only sends
random values to the prover. These values are independent of each other and the prover’s
messages. In practice, the Fiat-Shamir Transformation is used to build signature schemes
based on interactive, public coin zero-knowledge protocols and cryptographic hash func-
tions. This is discussed in more detail in Section 4.1.2.
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In this chapter, we briefly introduce the idea of Oblivious Transfer and then show how
VOLE correlations can be constructed from it. We also present the general structure of
VOLEs, as they will later be used in VOLEitH.

3.1 Oblivious Transfer

The concept of Oblivious Transfer (OT) was first presented by Michael O. Rabin in 1981
and is based on the RSA cryptosystem [Rab05]. Today’s usage of OTs is attributed to
Even et al., who introduced the first 1-2 Oblivious Transfer which can be used in MPC
protocols [EGL85]. The idea is that there is a sender who holds two messages, m0 and
m1. The receiver now can sample a bit b ∈ {0, 1} and based on his bit he chooses the
message mb. At the end of the protocol, the receiver should have learned mb and nothing
else. The sender is supposed to learn nothing. This can be generalised, such that both
parties execute the transfer of a subset of k messages out of a total set of n messages.
We will denote these protocols as k-n or

(
n
k

)
OT. The most common Oblivious Transfer

protocols can be summarised in three subgroups, 1-2 OT respectively 1-n OT and k-n OT,
with k, n ∈ N and k < n. To define useful and secure OT protocols, the following two
properties are needed:

• Sender security formally means that the receiver will only learn the content of the
messages he has chosen from the sender.

• Receiver security ensures that the sender does not learn which messages were cho-
sen by the receiver.

Notice that OT protocols can be described as two-party protocols between a sender and
a receiver, similar to Zero-Knowledge Proofs. Furthermore, OTs can be used to realise
cryptographic tasks, such as secure two-party computation or secure identification [Kil88].

3.1.1 All-but-one Oblivious Transfer

The all-but-one Oblivious Transfer scheme is a special form of OT where the receiver
learns all messages from the sender, except one. So 1-2-OT and k-n-OT with k = n − 1

can be seen as all-but-one-OTs. The huge advantage of such protocols is that the receiver
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can query all messages at once and does not have to invoke multiple Oblivious Trans-
fers. The communication overhead can thus be reduced. This can be later used to realise
efficient Zero-Knowledge Proofs based on Oblivious Transfer.

3.1.2 Extending Oblivious Transfer

The goal of extending OT is to generate a large number of Oblivious Transfers based on
a small number of base Oblivious Transfers. In 1996 Beaver presented an approach to
extend k OT’s up to O(kc) OT’s based on One-Way Functions and for a given random
c > 0 [Bea96]. Since the effectiveness and security are based on the underlying One-Way
Function, Ishai et al. brought up an approach to extend OTs in the Random Oracle Model
(ROM) using a pseudorandom generator (PRG) [IKNP03]. In the work of Ishai et al.,
extending OT’s mean to reduce OTm

ℓ to OTk
k where m > k and k is the security parameter.

This means that m Oblivious Transfers of ℓ bit strings can be implemented by k Oblivious
Transfers of k-bit strings. The authors focus on an OTk

m approach, which is an OTk
k system

with some small additional cost. In the literature, this work is called IKNP, based on the
authors of the paper.
In the protocol itself, the sender (S) inputs m pairs (xxxi,0, xxxi,1) and pick a random vector
sss ∈ {0, 1}k. The receiver (R) inputs m selection bits rrr = (r1, ..., rm) and initialises a random
m × k bit matrix TTT . Both parties invoke the OTk

m primitive. In this case S will be the
receiver, with input sss, and R will be the sender, with input (tttj , rrr ⊕ tttj). This will be the
base OT’ for the following protocol. S now computes QQQ, such that the j-th column is
qj = (sssj · rrr) ⊕ tttj and the i-th row is qqqi = (rrri · sss) ⊕ tttj . Note, that QQQ is also a m × k bit
matrix. S sends the pair (yyyi,0, yyyi,1), where yyyi,0 = xxxi,0 ⊕ H(i, qqqi) and yyyi,1 = xxxi,1 ⊕ H(i, qqqi),
for 1 < i < m for a given random Oracle H : [m] × {0, 1}k → {0, 1}l. Finally, R outputs
zzzi = yyyrii ⊕H(i, ttti) = xxxi,rrri .
It can be shown that this construction is secure against a malicious sender and a semi-
honest receiver [IKNP03]. The authors also describe an extension of the protocol, which
also ensures security against a malicious sender and a malicious receiver. This is not men-
tioned in this work, since we want to focus on a generalisation of the protocol called Soft-
SpokenOT [Roy22] which uses a modified form of this countermeasure. This approach
will be presented in Section 3.2.1.

3.2 Vector Oblivious Linear Evaluation

Oblivious Linear Evaluation (OLE) is a special case of OT and describes a two-party pro-
tocol between a sender, who holds a pair of field elements, and a receiver, who learns
a secret linear combination of these elements [BCGI18]. OLE can be used as a common
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building block in a secure computation setting of arithmetic circuits.
An extension of OLE is Vector Oblivious Linear Evaluation (VOLE), where the sender
holds a pair of vectors instead of field elements. The motivation for using VOLE instead
of OLE is to replace a high number of OLEs with a few, large VOLEs [ADI+17]. The VOLE
functionality itself takes a pair of vectors (uuu,vvv) ∈ Fn × Fn from the sender, a scalar x ∈ F
from the receiver and outputs www = uuu · x + vvv to the receiver. This functionality can also be
randomised by choosing the pair (uuu,vvv) at random.
The following subsections deal with the question of how to construct generalised subspace
VOLE from OT’s. Such VOLEs are finally needed in the VOLE in the Head protocol, which
will be an essential part of this work.

3.2.1 SoftSpokenOT

To build protocols using a high amount of OTs in a secure, but also practical manner,
the efficiency of extending OTs need to be increased. Based on the work of Ishai et al.,
shown in Section 3.1.2, Boyle et al. presented Silent-OT using the learning parity with
noise (LPN) assumption and improves extending OT’s, but with much stronger assump-
tions [BCG+19]. SoftSpokenOT, presented by Roy in 2022, instead is a generalisation of the
previous protocol by generalising the OTs to VOLE’s. For a given security parameter λ,
SoftSpokenOT reduces the amount of communication for each OT from λ bits ([IKOS07])
to only λ/k bits for any k, by using only Minicrypt assumptions [Imp95]. Reducing the
communication effort increases the computational overhead by a factor of 2k−1/k, which
is practical for small k. For this work, the focus lies on understanding the subspace VOLE
protocol.

IKNP to VOLE. The authors show how to build a valid VOLE correlation based on the
work by Ishai et al. to increase the efficiency of the protocol. For this, a PRG to extend

(
2
1

)
-

OT to message length ℓ is used. The base OT sender, called PS in the following, obtains
two random strings m0, m1. The base OT receiver called PR, gets its choice bit b ∈ F2 and
the corresponding message mb. Based on this, the base OT sender computes u = m0 ⊕m1

and v = 0 · m0 ⊕ 1 · m1 = m1. The receiver calculates ∆ = 1 ⊕ b ∈ F2 and furthermore
w = ∆m0 ⊕ (1 ⊕ ∆)m1 = mb. So if b = 0, ∆ = 1 then mb = m0 and the other way around.
Notice that the receiver can perform this calculation because he learns the message mb

as a result of the OT. Now w ⊕ v = ∆m0 ⊕ ∆m1 = ∆uuu, which is a VOLE correlation.
This construction is called a F2-VOLE, since PS gets a vector uuu ∈ Fℓ

2 and PR gets a scalar
∆ ∈ F2. Both learn secret shares v and w of the product. Note, that in the IKNP protocol,
the sender and receiver are turned around, such that the real sender is the receiver in the
base OT protocol and later on the sender in the extending protocol. In this protocol, the
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3 From OT to VOLE

sender PS is the sender in the base OT’s and the receiver in the extending protocol. In this
construction, m0 and m1 are chosen by the protocol and so uuu is random. If PS now want
to use its own uuu ′, it can send uuu = uuu ⊕ uuu ′ to PR instead. PR updates w′ = w ⊕∆uuu and so
w ⊕ v = ∆m0 ⊕∆m1 = ∆uuu′, while hiding uuu ′. To extend the base OTs, the IKNP protocol
calculates λ of this F2 VOLE’s.

To derandomise uuu to all be the same they send λ · ℓ bits and thus get WWW i ⊕ VVV i = ∆iuuu for
i-th VOLE correlation. Summarised as a large matrix, this results in WWW ⊕ VVV = uuu ⃗∆∆∆, with ⃗∆∆∆

to be the row vector of all ∆i. Using uuuj as a choice bit for the ∆-OT, the j-th of the above
correlation contains WWW j ⊕ VVV j = uj ⃗∆∆∆. Thus, PR has learned ⃗mmm0

j = WWW j and ⃗mmm1
j = WWW j ⊕ ⃗∆∆∆.

PS instead got its choice bit uj and ⃗mmmuj = VVV j . Now PS , the sender of the base OT, is the
receiver and PR, the receiver of the base OT, is the sender. Hashing mx

j finally decollates
the OT messages from each other.

VOLE for Small Fields. In the next step, Roy now presents the final SoftSpokenOT con-
struction, which uses elements from any small field Fq by using

(
q

q−1

)
OT’s, where q is

just polynomially large with uuu taking values in any subfield Fp of Fq. In addition to that a
PRG: {0, 1}λ→ Fℓ

p is used. To realise such a protocol, [BGI17] can be used. The authors de-
scribe, how to realise an efficient

(
2k

2k−1

)
-OT protocol based on pseudo-random functions

(PRF). This can be applied to any field F2k and is used to adapt the above protocol. The
sender PS now gets access to a random function F : F2k → Fℓ

2, while the receiver PR has a
random point ∆ and the restriction F ∗ of F to F2k \ {∆}. The equations for the vectors uuu,
vvv and www are described in the SoftSpokenOT paper [Roy22]:

uuu = F (0)⊕ F (1) =⇒ uuu =
⊕
x∈F

2k

F (x)

vvv = 0F (0)⊕ 1F (1) =⇒ vvv =
⊕
x∈F

2k

xF (x)

www = ∆F ∗(0)⊕ (1⊕∆)F ∗(1) =⇒ www =
⊕
x∈F

2k

(x⊕∆)F ∗(x) .

Note that the elements mmm0 and mmm1 from the general VOLE were exchanged by calling the
function F with 0 or 1 respectively. Furthermore, reducing the communication between
sender and receiver by a factor of k increases the computations that are needed by a factor
2k/k. So there are only λ/k VOLEs, which require both parties to evaluate F at every
point in a field of size 2k. This can now be applied to the small field Fq using an Ideal
FunctionalityFq,1,L

OT−1
for some linear Code C and someL, wereL denotes the set of allowed

selective abort attacks. Notice, that L is just needed to use a simulator in the security
proofs. In the real world, the adversary can perform so-called “selective abort attacks“
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3.2 Vector Oblivious Linear Evaluation

which are not possible in the simulator setting. To ensure that the adversary can not
distinguish between the real and simulator world, the simulator gets all possible attacks
as input such that he can deliver the correct results on the attacks. Let C be the length one,
dimension one code, GGGC = [1]. This makes UUU , VVV and WWW all become column vectors and ⃗∆∆∆

become a scalar. The protocol now works as follows: The sender PS obtains F from the
Ideal Functionality Fq,1,L

OT−1
The receiver PR gets x∗ and F ∗ from the same functionality.

PS computes then for all x ∈ Fq the corresponding rrrx = PRG(F (x)). Then PS outputs uuu,
vvv, such that uuu =

∑
x∈Fq

rrrx and vvv = −
∑

x∈Fq
rrrx x. PR instead set ∆ = x∗ and calculate

for all x ∈ Fq \ {∆} the corresponding rrrx = PRG(F∗(x)). Finally, the receiver outputs ∆

and www =
∑

x∈Fq\{∆} rrrx(∆ − x). This construction is a valid VOLE correlation since the
following holds:

www =
∑

x∈Fq\{∆}

rrrx(∆− x)
(1)
=

∑
x∈Fq

rrrx(∆− x) =
∑
x∈Fq

rrrx ∆−
∑
x∈Fq

rrrx x = uuu∆+ vvv

The first equation (1) holds since the x = ∆ term would be multiplied by (∆ −∆) and so
cancelled out. It can be shown, that this protocol is secure against a malicious sender and
a malicious receiver [BGI17].

Subspace VOLE. Until here, the construction of F2-VOLE’s from OT’s and the gener-
alisation for small fields Fq were described. In the following part, it is shown how to
construct subspace VOLEs for an arbitrary field of polynomial size. The basic idea is to
derandomise UUU in a way, such that PS send a correction of UUU to make all columns to be
identical. This ensures that each column would use the same set of choice bits. Other pro-
tocols, like [KK13], instead correct the rows of UUU to lie in an arbitrary linear code and not
only in a repetition code. Before, each VOLE protocol follows the idea of the correlation of
vectors, where PS receiveswww−vvv = uuu∆, with uuu ∈ Fℓ

p and vvv ∈ Fℓ
p. PR gets vvv ∈ Fℓ

p and ∆ ∈ Fq.
For the subspace VOLE construction presented by Boyle et al., VOLE now produces a cor-
relation of matrices WWW - VVV = UUU GGGC diag( ⃗∆∆∆) [BCGI18]. This especially means, that UUU gets
multiplied by the generator matrix GGGC for a given linear Code C. Notice, that the rows of
UUU are then code words of C. The subspace VOLE protocol by Roy works as follows: The

sender RS gets UUU ′ and VVV from an Ideal Functionality Fp,q,FnC
p ,ℓ,{X}

VOLE , where UUU ′ denotes an
ℓ× kC matrix over Fp and VVV denotes a ℓ × nC matrix over Fq. The receiver PR obtains ⃗∆∆∆

and WWW ′. Note, that for any output by the protocol UUU,VVV , ⃗∆∆∆,WWW and for every code C chosen
by the adversarie, the output UUU ′,VVV , ⃗∆∆∆,WWW ′ is unique for an underlying VOLE correlation,
forUUU ′ = [UUU ,CCC] TTT C andWWW ′ =WWW +[0CCC] TTT C diag( ⃗∆). PS dividesUUU ′ into two parts [UUU,CCC], the
matrix UUU itself and a correction syndrome CCC ∈ Fℓ × nC−kC , by multiplying UUU ′ with TTT−1

C .
In general, such syndromes are used to detect and correct errors in the transmission of
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3 From OT to VOLE

(linear) codes. In [Roy22], the receiver does not receive its part of the VOLE correlation di-
rectly, but must first correct it with the syndrome received from the sender. This is needed
to prove security, as the receiver should not be able to learn the sender’s inputs directly
and therefore only receives incorrect values. Therefore, PS sends the correction syndrome
to PR, who then starts to correct WWW ′ to maintain the VOLE correlation property after PS

removes CCC from UUU ′. This construction is a valid VOLE correlation since the following
holds:

WWW =WWW ′ − [0, C] TTTC diag( ⃗∆∆∆)

(2)
= VVV +UUU ′ diag( ⃗∆∆∆)− [0, C] TTTC diag( ⃗∆∆∆)

= VVV + (UUU ′ − [0, C] TTTC) diag( ⃗∆∆∆)

= VVV +UUU ·GGGC diag( ⃗∆∆∆) .

This protocol is just secure against a semi-honest sender PS . If PS sends a wrong correction
syndrome CCC, the VOLE correlation does not hold anymore. This can be fixed using a
consistency check protocol, using a linear ϵ-almost universal hash family R ⊆ Fm×ℓ

q . To
check the consistency, PS send ŨUU = RUUU and ṼVV = RVVV to PR, for a given hash function
R ∈ R. Notice, that RVVV denotes applying the hash function R on a matrix VVV . PR abort,
if ṼVV ̸= RWWW − ŨUU ·GGGC diag( ⃗∆∆∆), respectively output ⃗∆∆∆ and W if it is consistent. The second
equation (2) holds by the fact, that the ideal functionality outputs WWW ′ = VVV +UUU ′ diag( ⃗∆∆∆) if
PR is not corrupted. If the receiver is instead corrupt, he can choose WWW arbitrarily. In this
case the ideal functionality chooses VVV = −(UUU ·GGGC diag( ⃗∆∆∆)) +WWW such that the equation
holds. The whole protocol is shown in Figure 3.1.

In this subsection, the idea of extending OTs and the construction of a subspace VOLE
was presented. This will be used in the following to construct ZKPs based on VOLE’s.

3.2.2 Generalised Subspace VOLE Protocol

The Generalised Subspace VOLE Protocol presented by Baum et al. in 2023 is built on the
SoftSpokenOT protocol by Roy [Roy22] and shows how to build VOLEs for exponentially
large fields [BBdSG+23b]. To achieve this generalisation the authors limit their protocol
by choosing the receiver secret ∆ from a subset S∆ ⊆ Fm2

q . The projected set Si∆ itself
has polynomial size and contains the i-th coordinate of every element of S∆. In SoftSpo-
kenOT, there are no such restrictions, but the subspace VOLEs are only constructed for
polynomial-sized fields.
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3.2 Vector Oblivious Linear Evaluation

Construction from SoftSpokenOT. The basic construction is the same as in SoftSpo-
kenOT, which is described in more detail in Section 3.2.1. In this part, only the differences
are pointed out. The ideal functionality Fp,q,S∆,Fp,ℓ,{2S∆}

sVOLE now chooses ∆ from a given
subspace S∆ ⊆ Fnc

q , instead of choosing ∆ as a random element from Fnc
q . The reason for

performing this step is that the authors want to build VOLE correlations over exponen-
tial large fields, but also want to use the SoftSpokenOT protocol which just works with
polynomial-sized fields. To ensure this, Baum et al. use polynomial sized sub-fields, so
it is needed that the cardinality of the set S∆ is polynomial sized (N = |S∆| = poly(λ))
and it is required that {xxx}xxx∈S∆\{f1} spans Fq, viewed as a k-dimensional vector space over
Fp. This requirement enables the authors to state, that (uuu,vvv) are sampled independent and
uniformly random since {(1,xxx)}xxx∈S∆

spans a (k + 1)-dimensional vector space. Note that
Baum et al. use different notations from Roy, S∆ = {f1, ..., fN} mean that S∆ contains N

elements from Fq. In the SoftSpokenOT paper, these elements were notated by x, which
now denotes the elements of S∆. Since the goal of the generalised subspace VOLE proto-
col is to build ZKPs, the authors substitute prover and verifier respectively for the sender
and receiver. The prover takes the role of the sender in the SoftSpokenOT protocol, the
verifier replaces the receiver. Another change in notation regards the VOLE correlation,
replacing WWW with QQQ. Before, a VOLE correlation was defined as www = uuu · ∆ + vvv, in the
following it will be qqq = uuu ·∆+ vvv. This is also caused by applying this protocol to ZKP to
distinguish between the witness used by the prover and the VOLE correlation.

At last, the authors adapt the communication model with the ideal functionality. Before,
the sender and receiver got their values used in the VOLE correlation at the beginning
of the protocol. In the new version, Baum et al. adapt the protocol to the init-get model,
which simply means that the init call forces the ideal functionality to produce all values
that are needed for the computations, but later on prover and verifier have to send a
get-message to receive the values. In the protocol, the prover obtains his values at the
beginning of the protocol, but, the verifier does not know his part of the correlation until
the verification part. This is needed to prove the security of the system. The rest of the
protocol behaves like in SoftSpokenOT for a small domain S∆.

General Subspace VOLE. This construction for Fp subspace VOLE can now be trans-
formed to a more general Fn

p subspace VOLE protocol. For this, suppose S∆ = S1
∆×...×Sn

∆,

where Si
∆ ∈ Fq. With this it is possible to execute n instances of Fp,q,S∆,Fp,ℓ,{2S∆}

sVOLE in parallel
and build a single instance of subspace VOLE for S∆. Note, that the vectors uuu ∈ Fl

p, vvv ∈ Fl
q

and qqq ∈ Fl
q stack into matrices UUU ∈ Fl×n

p , VVV ∈ Fl×n
q and QQQ ∈ Fl×n

q .

Baum et al. adopt the subspace VOLE protocol, such that the rows of UUU lie in a subspace
defined by an arbitrary linear Code C. For this, they use the construction of SoftSpokenOT.
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PSPSPS PRPRPR

U ′U ′U ′,VVV Fp,q,FnC
p ,ℓ,{X}

V OLE
⃗∆∆∆,WWW ′

[UUU CCC] = UUU ′TTT−1
C

CCC

WWW = WWW ′ - [0 CCC] TTT C diag( ⃗∆∆∆)

output: UUU,VVV output: ⃗∆∆∆,WWW

output: UUU [h],VVV [h] output: „commit“
R←R

R

ŨUU = RUUU

ṼVV = RVVV

ŨUU , ṼVV

if: ṼVV ̸= RWWW − ŨUUGGGCdiag( ⃗∆∆∆): abort

else: output ⃗∆∆∆, WWW [h]

Figure 3.1: The full SoftSpokenOT protocol for subspace VOLE. The above part shows the
subspace VOLE part, while the bottom part shows the consistency check which
is needed to provide security against malicious PS .

As discussed in Section 3.2.1, derandomising UUU by multiplying with C’s generator matrix
such that the rows of UUU contain code words of C, works unless the prover P is malicious
and send rows Ui /∈ C. To overcome this problem, Roy presented a consistency check to
ensure the correctness ofUUU using a linear ϵ-almost universal hash family. Baum et al. point
out two fundamental changes in proving the security of their construction, the choice of
∆ as an element from an arbitrary set S∆ instead of being uniform in a linear space. The
second change is later needed to apply the Fiat Shamir transformation, to build a non-
interactive protocol. For this, the adversary can restart the proof between sampling the
hash function and the consistency check arbitrarily often. To realise this they will use a
hash family H ⊆ Fr×(ℓ+h)

q consisting of ℓ-hiding, ϵ-universal linear hash functions. The
proof itself is shown in [BBdSG+23b]. Using this protocol enables them to use generalised
subspace VOLE’s in a fully malicious setting using an ideal functionality Fp,q,S∆,Fp,ℓ,{2S∆}

sVOLE

and a family of ℓ-hiding, ϵ-universal linear hash functions.
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4 Signatures from Zero-Knowledge Protocols

In this chapter, we introduce the two protocols, MPCitH and VOLEitH, in more detail. We
explain how to build Zero Knowledge Proofs based on MPC protocols and VOLEs and
how they can be used to generate digital signatures.

4.1 Multi Party Computation in the Head

The field of post-quantum cryptography deals with the question of how to protect sys-
tems against an attacker who has access to a large quantum computer [BL17]. It has
been shown that many of our current systems are vulnerable to such adversaries. There-
fore, post-quantum cryptosystems are needed to protect us even in this scenario. To face
this challenge, the National Institute of Standards and Technology (NIST) started several
rounds to standardise algorithms that are secure against post-quantum adversaries1. The
focus is primarily on asymmetric cryptography, such as digital signatures or Key Encap-
sulation Mechanisms (KEM), as these are easy to adapt to the post-quantum scenario and
are widely used in today’s cryptography [CCJ+16]. Over the last few years, the first pro-
tocols have already been standardised.
Many proposals have already been submitted through the various standardisation rounds.
It has been shown that Multi-Party Computation can be used to realise efficient and secure
post-quantum signatures based on zero-knowledge protocols. In the following subsec-
tion, we discuss how to build efficient Zero-Knowledge Proofs based on Multi-Party
Computation and how to to leverage these protocols to create signatures.

4.1.1 Zero-Knowledge from MPC

In 2007, Ishai et al. presented a new way of creating efficient zero-knowledge protocols
based on MPC, called Multi-Party Computation in the Head (MPCitH) [IKOS07]. The idea
is the following: The prover takes any MPC protocol which is secure against t semi-honest
parties. Then he generates n virtual parties and shares the witness into n sharings, using a
polynomial or additive sharing. Now, the prover can run the MPC protocol by controlling
the n parties and receiving the views of each party. He sends the commitment of each view
to the verifier. The verifier chooses two different views and requests the openings. The

1NIST post-quantum cryptography: https://www.nist.gov/pqcrypto
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prover sends the openings and the verifier can check if the openings are consistent among
themselves and the commitments received before. This approach is called MPCitH since
the prover generates and simulates n parties “in his head“.
This protocol describes a valid Zero-Knowledge Proof. Completeness is fulfilled, since
if the prover knows the witness he can produce a valid sharing and perform the correct
MPC protocol such that all views are consistent. But if a malicious prover tries to cheat
there must be two or more views that are not consistent with each other. The verifier
opens two views at each run of the protocol, so the probability of finding the inconsistent
views is at least 1/

(
n
2

)
. Notice that the binding property of the commitment forces the

malicious prover to open the real value. The parties can rerun the protocol multiple times.
After k rounds the probability that the verifier accepts the proof of a malicious prover is
(1−1/

(
n
2

)
)k, so soundness is ensured given that k is big enough. To show zero knowledge,

two simulators are required. The first one simulates the MPC protocol and generates the
views of the parties. The second one now uses the first simulator to generate the views
and generates a valid commitment to two arbitrary views, the remaining commitments
are arbitrary or zero. Now, the verifier sends his request to open the commitments. If
the request fits the two consistent commitments, the simulator opens the commitments.
The probability, that the verifier chooses the two consistent commitments is at least 1/

(
n
2

)
.

If not, the simulator aborts and restarts the generation of the views until he generates
the correct commitments. Notice that the verifier can not distinguish between the com-
mitments created by the simulator and a real prover due to the hiding property of the
commitment scheme.
At this point, MPCitH can be used to build ZKPs. Since the idea was published, many
optimisations have been developed and applied to enable real-world usability.

4.1.2 Signatures from MPCitH

The above MPCitH construction describes an interactive protocol between a prover and
a verifier. However, for signatures, it would be desirable if the protocol were non-
interactive. Then the prover, or in this case, the signer could send the signature with his
message and the verifier can check it at any time and without further communication.
This can be realised by applying the Fiat-Shamir-Transformation to the protocol. Instead
of sending the commitments, receiving a challenge and sending the answer, the signer
now prepares the commitments, chooses the challenge by applying a hash function to the
commitments and picks the corresponding values to the challenge. He now sends every-
thing to the verifier. This is also shown in Figure 4.1. The Fiat-Shamir-Transformation now
ensures that if the interactive protocol is a valid ZKP, the non-interactive protocol is also
a valid ZKP. Notice that it must be ensured that the signer cannot choose the challenges
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PPP VVV

com = Commitments to views

com

e = sample challenges

e

z = open views

z

Verify

(a) Interactive Zero-Knowledge Proof.

PPP VVV

com = Commitments to views
e = H(com) e = sample challenges
z = open views

com, e, z

Verify

(b) Non-Interactive Zero-Knowledge Proof

Figure 4.1: Interactive and non-interactive Zero-Knowledge Proof for MPCitH using the
Fiat-Shamir-Transformation.

such that the verifier accepts a false proof. This is secure since the signer needs infeasible
many calls to the Random Oracle and thus is not able to cheat on the verifier. This was
shown by [PS96] and also holds in the post-quantum setting [DFMS19]. Finally, to sign a
message m the signer only has to send e = H(com||m) and thus the verifier can check the
ZKP and the corresponding message.

Two very popular MPCitH signature methods, which were standardised by the NIST, are
Banquet [BdSGK+21] and Picnic [CDG+20]. The idea of both protocols is very similar,
take a One-Way-Function fk, depending on a key k, and calculate y = fk(x) for a given
secret input x. The prover can now build a ZKP and shows that he knows a suitable x for a
given y. Due to the properties of the OWF, it is possible that a (malicious) prover can find a
x that produces the correct output without knowing it at the beginning of the proof with a
very low probability. After applying the Fiat-Shamir-Transformation, such a protocol can
be used as a valid non-interactive Zero-Knowledge Proof. Picnic relies on LowMC as the
OWF and Banquet uses AES. In general, AES is more expensive but many optimisations
have been developed that make AES-based systems more efficient. However, this scheme
can be used to build various signatures based on different One-Way Functions.
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4.2 Vector Oblivious Linear Evaluation in the Head

As discussed before, building efficient Zero-Knowledge Proofs is needed to find secure,
but also practical algorithms that can be used to achieve post-quantum security. Multi-
Party Computation in the Head (MPCitH) delivered the idea of simulating n parties “in
the head“ of the prover and thus reducing computational and commuincational overhead.
A new approach to build up ZKPs based on generalised subspace VOLEs, is also used in
the work by Baum et al. in 2023 [BBdSG+23b]. The authors state that the proof size of
current MPCitH protocols often scales linearly with the size of their circuit. Such pro-
tocols usually build up on symmetric cryptography, which easily can be made secure in
the post-quantum scenario. So this approach is good for small- or medium-sized (arith-
metic or boolean) circuits but gets worse when increasing the size. Ligero, a protocol
to build zero-knowledge arguments for NP by building upon an honest-majority MPC
protocol, achieves the reduction of the proof size to the square root of the circuit size
[AHIV17]. A huge disadvantage of this approach is the high amount of Reed-Solomon
encoding operations and consistency checks, which increase the computational costs for
the prover and the verifier. Thus, Ligero is an improvement, but only if the circuit size
is large enough. Therefore, new approaches try different methods like Vector Oblivious
Linear Evaluations. The idea is that the prover uses VOLEs to commit to its witness and
later on the verifier can check relations on these commitments using information-theoretic
techniques. Such protocols reduce the communication to one field element per multiplica-
tion gate and can be computed very efficiently [DIO20], [WYKW21]. The downside is that
they are designated verifier proofs since the verifier has to keep a secret state, namely his
part of the VOLE correlation. Revealing this would break the soundness of the protocol.

To overcome this problem and create efficient zero-knowledge arguments, [BBdSG+23b]
presented VOLE in the Head (VOLEitH), a proof system that builds on standard symmet-
ric cryptographic primitives and is publicly verifiable, just like MPCitH, by using gener-
alised subspace Vector Oblivious Linear Evaluation. The following subsection discusses
this protocol in more detail and describes how the individual rounds work together. It
also shows what adjustments were made to the Quicksilver protocol [YSWW21], such
that it fits the rest of the protocol. Furthermore, the creation of digital signatures, based
on VOLEitH, will be discussed.

4.2.1 Zero-Knowledge from Generalised Subspace VOLE

In this subsection, the VOLEitH protocol is presented in more detail. Since there are many
optimisations and proof structures inherited from other protocols, we show the high-level
idea and explain how they work together. The entire protocol is shown in Figure 4.2.
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PPP VVV

UUU,VVV Fp,p,S∆,C,2(l+1),L
sV OLE

Done

RRR = UUU [l+2,...,2l+2]

VVV 1 = VVV [1,...,l+1]

VVV 2 = VVV [l+2,...,2l+2]

DDD =WWW −UUU [1,...,ℓ]

χχχ← Ft
p

χχχ

∀i ∈ [t] :

gi(Y ) =
∑

h∈[0,1]

AAAi,h ∗ Y h

b̃ =
∑
i∈t

χχχi ∗AAAi,0 + rℓ+1

ã =
∑
i∈t

χχχi ∗AAAi,1 + u1,ℓ+1

ã, b̃

∆∆∆′ ← Fp

∆∆∆′

SSS = RRR+UUU [1,...,ℓ+1] ·∆∆∆′

SSS

ηηη = Fℓ+1
p

ηηη

ṽvv = ηηη⊤(VVV 2 + VVV 1 ·∆∆∆′)

ṽvv

1. Verify

Fp,p,S∆,C,2(ℓ+1),L
sV OLE

QQQ,∆∆∆

2. Verify

Figure 4.2: The VOLEitH protocol to build efficient public coin Zero-Knowledge Proofs
between a prover P and a verifier V [BBdSG+23b].
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Preparation: The protocol itself is parametrised with an [nC , kC , dC ] linear code C, the
set S∆ and a leakage-space L. As discussed in Section 3.2.2, the linear code is needed to
derandomise elements by embedding them into the code. The leakage space is used to
realise the security proof for the protocol since the attacker could perform other attacks
on the system that can not be simulated by the simulator. Using these attacks enables the
adversary to distinguish between the real and ideal world, so the results of the attacks
have to be transferred to the simulator, such that he is enabled to return the attack out-
puts. To apply the SoftSpoken OT protocol, which works over polynomial-sized fields,
the polynomial-sized set S∆ = (S′

∆)
nC ⊂ FnC

p is needed and enables one to build valid
VOLE instances for polynomial sized fields, even if FnC

p is exponentially large.
At the beginning of the protocol, both parties receive a set of polynomials as input. Each
polynomial fi, for i ∈ [t] has at least kCℓ variables and a degree at most two. Those
polynomials are needed for the zero-knowledge protocol provided by [YSWW21], where
the prover wants to show that he knows a witness w, such that for all i ∈ [t], fi(w) = 0

holds. The polynomials are the encodings of the multiplications within an OWF and the
prover has to show that he has calculated everything correctly. Thus, for t multiplications
there are exactly t polynomials that need to be checked. This type of proving technique is
also called nullity check in the literature. Both parties get the same polynomials fi. This is
later needed by the verifier to confirm that the prover provided a valid proof. The prover
also receives the witness w of length kCℓ as input. To perform matrix calculations on the
witness, the authors assume that w can be split up into ℓ vectors.

Round 1: The Ideal Functionality provides the parties with all the values they need to
calculate the VOLE correlations. [BBdSG+23b] use an adaptation of the Ideal Function-
ality of [Roy22], which interacts with the prover, the verifier and an attacker. After the
init-message from prover and verifier, the functionality randomly selects the values UUU , VVV
and ∆∆∆ from the respective fields and sets QQQ = VVV + UUU ·GGGC · diag(∆∆∆). If the prover is cor-
rupt, UUU and VVV are sampled by the attacker and QQQ is recalculated. In addition, a malicious
prover is allowed to send a leakage query which contains all additional information avail-
able to the attacker. But if the verifier is corrupt, ∆∆∆ and QQQ are chosen by the attacker and
VVV = QQQ − UUU ·GGGC · diag(∆∆∆) is returned to the prover. This recomputation of VVV is needed
to ensure a correct VOLE correlation. The Ideal Functionality sends the values UUU and VVV

to the prover. The verifier values are withheld until V sends the get message at the end
of the protocol. The Ideal Functionality then checks whether the secret ∆∆∆ is part of the
attacker’s leakage queue. If so, the check failed and it is aborted. If not, ∆∆∆ and QQQ are sent
to the verifier. In the end, the prover wants to convince the verifier, that he knows a valid
witness w and all calculations fit the VOLE correlation QQQ = VVV +UUU ·∆∆∆.
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The huge improvement of VOLEitH, in contrast to other VOLE-based protocols, is that the
Zero-Knowledge Proof is no longer a designated verifier proof. To realise that, Baum et
al. observed that QQQ and ∆∆∆ do not have to be known to the verifier during the calculations,
but are only required during the verification. At this point, all calculations by the (ma-
licious) prover are completed, so the prover cannot do anything to break the soundness,
even if he knows ∆∆∆. Hence, ∆∆∆ no longer needs to be kept secret. Thus, the interaction be-
tween the verifier and the Ideal Functionality is split up, in the first round V only receives
a message “done“ and in the verification, he gets QQQ = VVV +UUU ·GGGC · diag(∆∆∆) and ∆∆∆ ∈ S∆∆∆.
The prover receives his values UUU,VVV ∈ F(2ℓ+2×nC)

p and divides them into two parts, such
that each sub-matrix has ℓ+1 rows,UUU =

(
UUU1

RRR

)
and VVV =

(
VVV 1

VVV 2

)
. All values are usually chosen

completely randomly unless the prover or verifier interacts maliciously. In this case, the
Ideal Functionality allows the malicious party to choose its own values.
After receiving all the values, the prover commits to its witness www by sending DDD, with
DDD = WWW − UUU [1,...,ℓ], to the verifier. Here, WWW denotes the matrix containing all ℓ vectors wwwi

as rows. This step is later needed in the verification to validate, that the prover knows the
correct witness w and thus provides the soundness of the protocol. It is also ensured, that
the verifier does not learn the witness, which is an important feature of Zero-Knowledge
Proofs since V never learns UUU [1,...,ℓ] and thus can never remove the masking of WWW .

Round 2: The verifier samples a challenge χχχ and sends it to the prover. This is an opti-
misation presented by the Quicksilver protocol. The authors state, that for t multiplication
gadgets there will be t equations of the form BBB = AAA0 +AAA1 ·∆∆∆ that have to be checked by
the verifier. Notice that BBB and ∆∆∆ are held by the verifier and AAA0 and AAA1 are provided by
the prover. Furthermore, this equation forms a valid VOLE correlation. Instead of solving
t equations, χχχ now can be used to solve only the following equation to verify the proof:

∑
i∈[t]

BBBi ·χχχi =
∑
i∈[t]

AAA0,i ·χχχi +
∑
i∈[t]

AAA1,i ·χχχi ·∆∆∆ .

Baum et al. now adopt this optimisation. Instead of using one scalar χχχ and calculate χχχi

for i ∈ [t], the challenge χχχ will be a vector containing t values χχχ1, ...,χχχt. Furthermore, they
use ∆∆∆′ instead of the real ∆∆∆. Since ∆∆∆′ is a random element from a smaller field Fp, all
corresponding calculations can be carried out more efficiently than with ∆∆∆. In addition,
∆∆∆ has to stay secret to provide the soundness of the protocol, which was the essential
problem of designated verifier proofs.
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Round 3: In this round, the prover performs the Zero-Knowledge Proof and calculates
all values that are needed by the verifier to confirm the correctness of the proof. As before,
the Quicksilver protocol is used to build an efficient ZKP. One feature, that is exploited
by this proof, is that the polynomials fi are degree separating polynomials, which simply
means that any polynomial fi with degree d can be represented by

∑d
h=0 fi,h so that all

elements in fi,h have exactly degree h. Quicksilver now uses these polynomials. The
prover evaluates the polynomials fi and thus builds a valid Zero-Knowledge Proof. To do
this, he creates a polynomial gi for each i ∈ [t] such that:

gi(Y ) =
∑

h∈[0,2]

fi,h(r1 + w1 · Y, ..., rℓ + wℓ · Y ) · Y 2−h

= fi(w1, ..., wℓ) · Y 2 +
∑

h∈[0,1]

AAAi,h · Y h,

where AAAi,h is the aggregated coefficient for all terms with Y h and i ∈ [t]. Remember,
fi(w1, ..., wℓ) will be zero if the prover is honest and holds a correct witness w.
In the next step, the prover calculates all check values that we have discussed in Round 2,
so he calculates:

b̃ =
∑
i∈[t]

χχχi ·AAAi,0 + rℓ+1,

ã =
∑
i∈[t]

χχχi ·AAAi,1 + uℓ+1.

In addition to the above equation from Quicksilver, Baum et al. add a masking value to
the coefficients, namely rℓ+1 and uℓ+1, which can later be used to recompute the correct
coefficients during the verification. Now, V sends ã and b̃ to the verifier. This will later be
used in the verification to check the above equation, which will be discussed later in the
verification phase. Notice, that this part of the protocol will be performed “in the head“ of
the prover since the prover now evaluates all polynomials fi for i ∈ [t] to reduce the proof
size.

Round 4: The verifier now samples ∆∆∆′ and sends it to the prover. This is necessary
since ∆∆∆ is needed to build the VOLE correlation in the Quicksilver protocol, as discussed
in Round 2, which can not be published to ensure the soundness of the zero-knowledge
protocol. Instead of ∆∆∆, the value ∆∆∆′ can be used to build the VOLE correlation, such that
s̃ = b̃ + ã ·∆∆∆′. This step hides the original ∆∆∆ and also ensures the public coin property
since ∆∆∆′ is sampled at random.
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Round 5: In this round, the prover uses ∆∆∆′ to prepare S, which is later needed to prove
the correctness of the zero-knowledge protocol. So, P sends SSS, with SSS = RRR+UUU1,...,l+1 ·∆∆∆′,
to V . This can later be used to verify the correctness of the VOLE correlation formed in
Round 3, which will be discussed in the verification step.

Round 6: In the case of a malicious prover, it could be possible that he does not send the
correct value SSS, but any arbitrary value SSS∗. To detect this, the verifier can send another
challenge ηηη to the prover.

Round 7: The prover now calculates ṽvv = ηηη⊤(VVV 2 + VVV 1 ·∆∆∆′) and sends it to the verifier.
Once the verifier has learned the correct VOLE CorrelationQQQ = VVV +C(SSS) ·∆∆∆, he can verify
the subspace VOLE relation between ṽvv and ηηη⊤C(S).

Verification: The verification is carried out by the verifier and serves to check the cor-
rectness of the Zero-Knowledge Proof. It can be divided into two parts, checking whether
the ZKP was carried out correctly and whether the prover sent the correct values.
To check the Quicksilver proof, the above-discussed equation s̃ = b̃ + ã · ∆∆∆′ must be
satisfied. Since ã and b̃ were sent by the prover, the focus now relies on how to calculate
s̃ and why this delivers the correctness of the proof itself. The verifier starts calculating
SSS′ = SSS+

(
DDD
0

)
·∆∆∆′ = RRR+

(
WWW
uℓ+1

)
·∆∆∆′, which simply follows by the commitmentDDD, which was

send in Round 1, and SSS received in Round 4. Notice, that the first ℓ rows of SSS′ have the
form: rj +wj ·∆∆∆′ and s′ℓ+1 = rℓ+1+uℓ+1 ·∆∆∆′. Based on this, V can now build a polynomial
ci, using the common polynomials fi, i.e.:

ci(Y ) =
∑

h∈[0,2]

fi,h(s
′
1, ..., s

′
ℓ) · Y 2−h

=
∑

h∈[0,2]

fi,h(r1 + w1 ·∆∆∆′, ..., rℓ + wℓ ·∆∆∆′) · Y 2−h,

which exactly matches the calculation for gi(Y ) performed by P , if you evaluate gi on ∆∆∆′.
Again, ci(Y ) for i ∈ [t] can be can be checked by solving t equations or using χχχ to build
one equation, namely s̃:

s̃ =
∑
i∈[t]

χχχi · ci(∆∆∆′) + sℓ+1.

The value sℓ+1 has to be added, since the values ã and b̃ are masked using uℓ+1 and rℓ+1,
which is exactly the last row of SSS′. Finally, the equation s̃ = b̃ + ã ·∆∆∆′ can be checked, if
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ã, b̃, SSS are transmitted correctly and the prover knows a valid witness w. The equation is
satisfied since both parties evaluate the same polynomials on the same points. It is also
ensured that V does not learn w, since it is always masked by UUU respectively RRR, which are
unknown to the verifier.
The second verification step is needed to ensure, that SSS was correctly sent by the prover.
For this, V provided the challenge ηηη and the prover replied using VVV 1,VVV 2 and ∆∆∆′. The
verifier interacts again with the ideal functionality and receives his values QQQ and ∆∆∆. To
understand, how to prove the correctness of SSS, a deeper look at the values of QQQ is needed.
Remember, that QQQ was sent by the ideal functionality and the following holds:

QQQ = VVV + UUU ·GGGC · diag(∆∆∆)

=
(
VVV 1

VVV 2

)
+

(UUU [1,...,ℓ+1]

RRR

)
·GGGC · diag(∆∆∆) .

Furthermore, QQQ1 = VVV 1 +UUU [1,...,ℓ+1] ·GGGC · diag(∆∆∆) and QQQ2 = VVV 2 +RRR ·GGGC · diag(∆∆∆). In the
check itself, the verifier now calculates QQQ2 +QQQ1 ·∆∆∆′. This is a valid check for SSS:

QQQ2 +QQQ1 ·∆∆∆′ = (VVV 2 +RRR ·GGGC · diag(∆∆∆)) + (VVV 1 +UUU [1,...,ℓ+1] ·GGGC · diag(∆∆∆)) ·∆∆∆′

= (VVV 2 +RRR ·GGGC · diag(∆∆∆)) + (VVV 1 ·∆∆∆′ +UUU [1,...,ℓ+1] ·∆∆∆′ ·GGGC · diag(∆∆∆))

= (VVV 2 + VVV 1 ·∆∆∆′) + (RRR+UUU [1,...,ℓ+1] ·∆∆∆′) ·GGGC · diag(∆∆∆)

= ṽvv +SSS ·GGGC · diag(∆∆∆)

= ṽvv + C(SSS) · diag(∆∆∆) .

This equation only holds if the prover sends a correct value for SSS and forms a valid VOLE
correlation. Notice, that the authors use ηηη to reduce the communication costs of this proof
since P only has to send a vector of length ℓ + 1 instead of sending an (2ℓ + 2 × nC)-
dimensional matrix. This can easily be applied by multiplying ηηη⊤ by the equation above.
Additionally, ηηη ensures that the prover has to commit to its value for ṽvv.

Malicious Prover: After presenting the protocol, we describe the possibilities of a mali-
cious prover to pass the final checks, without knowing a correct witness w, in more detail.
Furthermore, we will highlight how the above checks assist the verifier in identifying the
incorrectness inside the proof, which is also shown in Figure 4.3.
After receiving the values from the Ideal Functionality, the malicious prover P∗ commits
to his invalid witness, w∗. Since w∗ is not a correct witness, there will be a polynomial fi,
such that fi(w∗) = eeei ̸= 0. After receiving χχχ by V , P∗ starts to prepare the polynomials
gi and calculates ã and b̃. Now, the malicious prover can send the correct values ã and b̃

or he samples two error values, i.e. Eã, Eb̃ ∈ FkC
p , and sends ã + Eã respectively b̃ + Eb̃
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Round 1

Round 2

Round 3

Round 4

Round 5

Round 4

Round 5

Round 6

Round 7

Verify Verify VerifyVerify

∑
i∈tχχχi ∗ eeei ̸= 00 = ηηηT ∗ C(ES) ∗ diag(∆∆∆) Eṽvv = ηηηT ∗ C(ES) ∗ diag(∆∆∆)

∑
i∈tχχχi ∗ eeei = 0

Error: 1/p Error: 2/pError: 1/|S∆∆∆|dC Error: 1/|S∆∆∆|dC

DDD =WWW ∗ −UUU [1,...,ℓ]

χχχ

ã, b̃

∆∆∆′

SSS∗
SSS

ã+ Eã, b̃+ Eb̃

∆∆∆′

SSS
SSS∗

ηηη

ṽvv ṽvv + Eṽvv

Figure 4.3: Execution of the VOLEitH protocol by a malicious prover P∗ using an invalid
witness w∗. It is shown, which values of P∗ can be sent and how the challenges
help the verifier to recognise the false witness. The soundness error is high-
lighted in colour.
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instead. As discussed before, the verifier now gets the value SSS by the malicious prover,
which again can be the correct SSS or a malicious value SSS∗, and which is needed by the V to
reconstruct the polynomials and check the Quicksilver constraints.
At this point, the first verification step enables the verifier to detect the incorrect witness.
In the case of getting the correct values ã, b̃ and SSS, the equation s̃ = b̃+ ã ·∆∆∆′ only holds if
the summation of all χχχi · eeei = 0. This follows from the fact that there is a part of w∗, such
that fi(w∗) = eeei ̸= 0 and so s̃ = b̃+ ã ·∆∆∆′ is equivalent to

∑
iχχχi · eeei ·∆∆∆′ = Eb̃ + Eã ·∆∆∆′. In

the case of a correct ã and b̃, Eã = Eb̃ = 0 and thus the summation of χχχi · eeei has to be zero
since ∆∆∆′ is not known to the prover at this point. Remember that χχχi comes from the finite
field Fp. Therefore, the malicious prover has a probability of 1/p to find a correct value eeei

such that the summation is zero. In the other case, where P∗ sends incorrect values ã and
b̃ using Eã respectively Eb̃ but a correct value SSS, eeei can be chosen to fit to Eã or Eb̃ and
thus the probability is 2/p.
In the second case, V receives an incorrect valueSSS∗, which hides the incorrect values ã+Eã

and b̃+Eb̃, and which cannot be detected directly. To solve this, Round 6 is required, where
the prover must show that he has sent a correct SSS. Based on the equation, discussed
in more detail in the description of the protocol, the malicious prover has to fulfil the
equation −Eṽvv = ηηη⊤C(ES) · diag(∆∆∆), where Eṽvv denotes the error that P∗ adds to ṽvv and ES

denotes the error added to SSS. There are two scenarios again, in the first one P∗ sends a
correct value for ṽvv, thus Eṽvv = 0 and ηηη⊤C(ES) · diag(∆∆∆) = 0. This happens if C(ES) = 0,
which is only the case if SSS = SSS∗, or if there are at least two indices i, j such that there are
two values inside the commitment that are contrary to each other, more mathematically:
ηηηi · C(ES,i) = −ηηηj · C(ES,j). This results in a soundness error of |S∆|−dC , since P∗ does
not know ηηη during this calculation and thus has to find a pair C(ES,i), C(ES,j) that fits the
above equation. Both are embedded in the linear code, thus the probability of finding such
a pair is |S∆|−dC . In the second scenario, the malicious prover sends an incorrect value for
ṽvv, thus Eṽvv ̸= 0. The prover now has to ensure, that the values C(ES) · diag(∆∆∆) fit to the
corresponding values in Eṽvv. This happens with probability at most |S∆|−dC , since each
value for ∆∆∆ is sampled randomly from S∆ and P∗ has to guess dC parts of ∆∆∆ to ensure the
correct embedding.
In summary, the result is a soundness error of 3/p + 2|S∆∆∆|−dC , which is still pretty big.
Analogous to MPCitH, the checks can be carried out multiple times. So the verifier starts
again at Round 4, sends another ∆∆∆′ and checks the prover’s answers. This results in a
negligibly small soundness error.
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4.2.2 Signatures from VOLEitH

Notice that the above VOLEitH construction is very general, but also has a big soundness
error and thus many repetitions are needed to get a reliable ZKP. Since the goal was to
achieve small and efficient signatures, Baum et al. present a VOLEitH construction for
small fields based on repetition codes, which got a smaller soundness error. The idea is
to adapt the Quicksilver protocol, such that an extension field Fpk can be used to prove
the constraints, even when the witness is committed over Fp [BBdSG+23b]. This helps
the authors in the AES use case since AES is defined over an extension field of F2. For a
given repetition parameter τ , the prover receives his values uuu ∈ Fℓ+rτ

p and VVV ∈ F(ℓ+rτ)×τ
q

from the ideal functionality and commits to his witness by sending ddd = www − uuu[1...ℓ], for
q = pr. After committing, the values uuui and wwwi are embedded in the Fqτ and all vvvi are
getting lifted into Fqτ . This allows all further calculations to be carried out in Fqτ = Fprτ .
The Quicksilver protocol now has to be adapted, such that the polynomials fi ∈ Fpk are
also embedded into f i ∈ Fqτ and thus the Quicksilver output ci can be described by:

ci(Y ) =
∑

h∈[0,2]

f i,h(vvv1 +www1 · Y, ..., vvvℓ +wwwℓ · Y ) · Y 2−h.

The authors also point out that rτ |k must apply so that every lifted and embedded element
can be transformed back into an element of Fprk . The verifier now sends t values χχχi ∈ Fqτ

as before and gets the values ã and b̃, which were masked by u∗ and v∗:

u∗ =
∑
i∈rτ

uuui ·Xi−1, v∗ =
∑
i∈rτ

vvvi ·Xi−1.

To check the corresponding VOLE correlation v∗ = q∗ − u∗ ·∆∆∆, the verifier receives the
values QQQ ∈ F(ℓ+rτ)×τ

q and ∆∆∆ ∈ Fτ
q . The elements qi and ∆∆∆i also need to be shifted in Fqτ to

fit the values received by the prover. Now he can check the constraint c = ã ·∆∆∆ + b̃ and
thus verify the proof.

Notice, in the generalised subspace VOLEitH framework a code-switching step is nec-
essary to prove the VOLE constraint, which is not the case using repetition codes. Ac-
cordingly, no checks are needed to verify that the prover performs honestly during the
code-switching. Furthermore, the code lifting soundness error is much smaller in com-
parison. Assuming that a malicious prover does not have a correct witness w∗, there must
be an embedded f i ̸= 0 which still satisfies

∑
i∈[t] f i(w) ·χχχi = 0. This happens with prob-

ability 1/prτ since χχχi ∈ Fqτ is sampled after the prover committed to f i(w). Otherwise,
the malicious prover can try again to guess the secret state ∆∆∆, which he succeeds with
probability 2/|S∆|. This creates a total soundness error of 1/prτ + 2/|S∆|.

41



4 Signatures from Zero-Knowledge Protocols

FAEST, the first VOLEitH-based signature scheme, is built on repetition codes and de-
livers very short signatures, even for big circuits [BBdSG+23a]. Since there are no Ideal
Functionalities in the real world, the authors had to adapt this part and present a compiler
to replace all calls to the Ideal Functionality with Vector Commitments. The idea is to com-
mit to random values and open the challenged parts during the verification, such that all
constraints can be checked individually. This scheme is insecure if a (malicious) prover
can predict the verifier’s challenges or learn them from old challenges. This can be pre-
vented by the predetermined structure of the protocol, which carries out the verification
steps of the verifier and thus the opening of the commitments at the end of the protocol
execution. Since all of the prover’s calculations are then completed, he is no longer able to
change the values he sent. Finally, there is an interactive zero-knowledge protocol based
on VOLE, which has to be made non-interactive using Fiat-Shamir-Transformation. There-
fore, the structure for creating signatures from VOLEitH is very similar to the MPCitH-
based signatures described previously: Take a VOLEitH protocol and apply the Fiat-
Shamir-Transformation to make it non-interactive. However, the additional step of re-
placing the Ideal Functionalities is required. This can, again, be adapted using different
One-Way Functions. In the case of FAEST, AES is used.
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This part of the work deals with the comparison between MPCitH and VOLEitH. To do
this, we highlight similarities and differences and present the computational complexity
and communication costs of the protocols in more detail. The goal is to find out in which
scenarios each protocol excels, which we can then leverage to find a good starting point
for optimisations.

5.1 MPCitH against VOLEitH

In this section, we compare MPCitH and VOLEitH to show where both protocols have
similar approaches and where they differ. We highlight some bottlenecks of both protocols
to show the need for further optimisations.

5.1.1 Similarities

Since VOLEitH is always described as “just like MPCitH“, it stands to reason that there
are some similarities between both protocols. We pay particular attention to finding high-
level descriptions, even if the underlying structures differ slightly.
The main goal of both protocols is to build practical signatures, which are secure against
active (post-quantum) adversaries, and thus aim to improve symmetric cryptography. To
realise this, publicly verifiable ZKPs are used. The first major overlap is the structure,
which is also shown in Figure 5.1. Both approaches execute an underlying protocol “in the
head“ of the prover and send the hidden result to the verifier. The verifier then responds
with a challenge that forces the prover to verify the result previously sent. In VOLEitH,
additional challenges are required to verify that the prover does not cheat when opening
the values and to implement further optimisations within the protocol. This results in
very small, but also efficient, ZKPs that can easily be verified and later be used to build
digital signatures. In addition to the structure of the prover, the structure of the verifier in
VOLEitH is also very similar to MPCitH. During the verification, the steps of the prover
are carried out by the verifier to check whether the received calculations are correct. This
leads to the fact that in practical implementations, such as Banquet or FAEST, the verifier
and prover time do not differ greatly from each other.
Both protocols use the same cryptographic primitives to ensure the security and efficiency
of the protocols, in particular One-Way Functions and Commitment Schemes. In MPCitH,
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Initialisation

MPC Protocol

Result MPC Protocol

Commit to Result

Challenge: Open Commitment

Openings

Verify

(a) MPCitH

Initialisation

Commit to Witness

1. Challenge: Reduction

VOLE Zero-Knowledge Protocol

Result VOLE ZKP

Send Masked Results

2. Challenge: Verify Results

Answer to Challenge 2

3. Challenge: Verify Answer

Answer to Challenge 3

Verify

(b) VOLEitH

Figure 5.1: Comparison of the structure of MPCitH and generalised subspace VOLEitH.
The execution of the underlying protocol and the publication of the hidden
result are marked in blue , while the opening of the result is marked orange .

The additional steps from VOLEitH are shown in red .
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commitments are used to commit to the views of each party, before being sent to the ver-
ifier for verification. VOLEitH requires a special form of commitment, so-called all-but-
one commitments, which are used to exchange the ideal functionality and thus provide a
real-world application. Such all-but-one commitments can also be applied to reduce the
computational overhead in MPCitH [BBM+24]. This results in faster and more efficient
algorithms that require less memory and computing power. OWFs are used in both pro-
tocols to build efficient signatures that cannot be broken by any (post-quantum) adversary.

5.1.2 Differences

In MPCitH protocols, the prover simulates parties “in the head“, so there are several vir-
tual parties which have their share of the witness and calculate a common functionality.
In the case of the BGW protocol this would be its common circuit. Each of the parties pro-
duce their view, which can be sent to the verifier, who checks whether they are consistent
with each other. In VOLEitH the parties are neither holding a share of the witness nor
compute some common functionality, instead there is one VOLE correlation that can be
checked by a verifier. Instead of opening the views of the individual parties, the prover
has a witness and a common set of polynomials, which are evaluated on the whole wit-
ness and the results are summarised. The results are then masked and sent to the verifier.
The masked values are later part of the verification of the VOLE correlation components
but do not directly verify the correctness of the proof. The reason for these differences lies
in the different cryptographic approaches of both protocols. MPCitH is based on MPC
protocols, which are designed to compute shared functionality with multiple parties. So
it must be ensured that during the execution “in the head“ of the prover, all calculations
are consistent with each other and the secret has been shared correctly. On the other hand,
VOLEitH uses VOLEs, which is a special case of OT and is carried out only between two
parties. Thus, no sharing needs to be created, and the prover does not simulate any other
parties. However, the verifier must be able to check all and-gates and thus verify a cor-
rect calculation by the prover. To realise this efficiently, polynomials are used, which are
recalculated by the verifier, but no virtual parties are needed.
The nature of VOLE protocols is to work over large fields, and thus provide a big set of
potential keys that reduce the attackers chances of winning. In VOLEitH, Baum et al. also
present a generalised subspace VOLE protocol which is public coin verifiable and works
over any finite field, even if it is exponentially large. To improve the soundness error and
get smaller proofs, FAEST uses a special VOLEitH protocol for small fields, which is also
the approach of MPCitH protocols to keep calculations simple and proofs small. However,
VOLEitH provides the possibility of working on arbitrarily large, finite fields, which is not
necessarily the case with MPCitH.
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5.1.3 Bottleneck of MPCitH

To get a better sense of limitations and optimisations on MPCitH, this subsection will
highlight the main bottlenecks and thus provide a basic overview before we present our
optimisations in Chapter 6.

Scalability. The biggest limitation of Multi-Party Computation in the Head protocols
is the scalability since the proof size increases linearly with the size of the circuit, and
thus MPCitH is not efficient for big circuits [BBdSG+23b]. As discussed before, [AHIV17]
tries to solve this problem but has immense overhead due to the Reed Solomon calcula-
tions and is only useful for very large circuits. So there is no general proof system based
on Multi-Party Computation that realises efficient Zero-Knowledge Proofs for any circuit
size. In 2024, [LJWJ24] provided a high-performance hardware implementation for Pic-
nic3 and thus demonstrated how to enhance the scalability of MPCitH protocols. Their
main inside was that the prover has to simulate a lot of parties to get a reliable bound for
the soundness error without having to repeat the proof arbitrarily often. This can lead to
shorter proof sizes but also increases the computational complexity compared to current
MPCitH approaches.

Exchanging Building Blocks. In the last years of research, it turned out, that MPCitH
protocols can be easily adapted by exchanging the underlying MPC protocol. This en-
ables the use of a wide variety of protocols and increasingly efficient and smaller proofs,
but comes with a variety of new challenges. One difficulty is the underlying cryptographic
problem. Protocols, like BBQ or Banquet, are built on AES and thus use symmetric prim-
itives. Others like Picnic are using more MPC-friendly primitives, which means that the
underlying structure performs many local operations and requires little communication
between parties. But there are also protocols building up on hard problems like syndrome
decoding [Fen22]. All deliver a different degree of security, run time and proof size. De-
pending on the context, they can all be used equally well, so there is no optimal underlying
problem. This also makes it more difficult to implement such protocols, as they are not
simply exchanged in blocks, as one might expect, but further optimisations are made to
make the specific protocol faster and more efficient. This also makes it difficult to com-
pare the protocols with each other and to use them in real-world applications. Therefore,
for every application of MPCitH protocols, it must be checked beforehand whether the
requirements are sufficient. Thus, MPCitH cannot be used in a generalised manner.
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Costs. Most of today’s MPCitH protocols are optimised for either efficiency or proof
size. Efficient protocols aim to reduce the computational complexity or the runtime, while
approaches that optimise the proof size may use a higher amount of parties or more
rounds, trading runtime for a smaller proof size [BKPV24]. This allows one to use dif-
ferent parameters to optimise the protocol for a specific problem but also makes the gen-
eralisability of MPCitH protocols and their application in new subject areas more difficult.
Another significant trade-off is between the performance and security of the protocol. A
higher level of security often requires more complex or additional computations, for ex-
ample, additional checks or challenges, and more communication between the partici-
pants in the protocol [AMGH+23]. Trying to reduce the communication between parties
often results in smaller proofs and more efficient computation times, but can also lead to a
higher computational overhead on individual parties. This can be a problem if individual
parties have less computing capacity.
An example of this is the use of Vector Commitments. In [BBM+24] the authors show an
improvement of all but one Vector Commitments by using batching and applying it to
MPCitH and VOLEitH. This reduces the size of the elements sent during the opening but
also reduces the security within the protocol. This is due to the use of rejection sampling,
which reduces the entropy of the challenge space. The scheme remains secure because
the attacker would have to perform the same steps as the prover and would also have to
guess the call of a hash function, but it is more vulnerable than before.

Side-Channel Vulnerability. Based on the high popularity of MPCitH protocols and the
high theoretical security, people try to exploit vulnerabilities in practical implementations,
for example by applying side-channel attacks [GSE21]. In [SBWE20], the authors show
how vulnerable MPCitH-based protocols are against side channels and that a minimal
leakage suffices to break the security of the whole protocol. During the standardisation by
the NIST, while many of the submitted protocols already provide protection against side-
channel attacks, there were also some unprotected approaches that, while secure in theory,
can reveal errors if implemented incorrectly or used in practice [AAC+22]. Therefore, for
each application, it must be checked again whether the implemented MPCitH protocol
is secure and can be used, as they are not inherently secure in practice. Countermea-
sures against side-channel attacks include constant-time implementations and masking
schemes. These techniques have been applied to protect the Picnic3 signature [ABE+21].
While these countermeasures require additional computations and reduce performance,
they enhance the security of the protocol.
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5.1.4 Bottleneck of VOLEitH

We also want to take a closer look at the limitations of VOLEitH. As VOLEitH is a com-
paratively new concept, research into its structure and composition has been limited so
far. As such, it stands to reason that the following listed weak points and problems may
not be exhaustive.

Public Verifiability. To realise signatures, publicly verifiable protocols are necessary. As
discussed before, most protocols that are based on VOLE are designated verifier proofs
and thus not publicly verifiable. To solve that, [BBdSG+23b] presented VOLEitH which
uses the code-switching step and additional challenges. This results in additional over-
head and more complex calculations, which can be optimised for specific applications,
like FAEST, but can not be applied in general. Another example of less generalisability is
the adaptation of the protocol to Quicksilver since the ZKP and most of the challenges are
adjustments to fit the VOLEitH scenario.

Costs. Building one VOLE instance is very expensive. Producing random values in F2

and lifting them into a larger field F2k , which is needed for FAEST, forces the verifier to
perform O(2k) calculations. For a given security parameter λ, this verification is infeasible
for a single instance using k = λ [BBdSG+23a]. To solve this issue, the authors run several
VOLE instances in parallel over small fields, such that all calculations can be done using
a polynomial amount of work. For a given repetition parameter τ ∈ N, k0 = ⌈λ/τ⌉ and
k1 = ⌊λ/τ⌋ are chosen as the small-field size parameter. Based on this, two other repetition
parameters τ0 = λ mod τ and τ1 = τ − τ0 are selected such that k0 · τ0 + k1 · τ1 = λ. This
ensures that the concatenation of results together forms a valid VOLE correlation over the
F2λ and results in a trade-off between signature size and speed. Decreasing τ results in
larger fields and thus in smaller proofs, but more work for the prover and verifier.
Another problem is the high communication overhead. In the general subspace VOLE
version of the protocol, there are several interactions between the prover and the verifier
where huge vectors and matrices are sent. This overhead scale is linear with the amount
of needed VOLE correlations. Thus, a lot of optimisations are included to reduce this
overhead and shorten the proof size, but the overhead is not to be neglected. This could
also be a problem for the scalability. This is discussed in more detail in Section 5.2.

Vulnerabilities. An inherent problem of VOLE protocols are selective fault attacks
[Sch22]. For a given VOLE correlation y = a · x + b, a malicious verifier can introduce
an error, namely y′ = y + (a′ − a) · x, and thus learn if a specific bit of x equals zero.
Such attacks allow the adversary to introduce errors depending on the secret inputs of
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an honest prover, even if the VOLE correlation is correct and thus leak parts of the secret
input. Furthermore, errors, that are introduced during the evaluation could propagate
through the whole protocol and lead to incorrect outputs.

5.2 Communication Costs

The communication between the prover and verifier is an essential part of analysing the
efficiency of zero-knowledge protocols. Therefore, many approaches try to reduce com-
munication and compress the data to be sent.

5.2.1 Communication of MPCitH

Communication is one of the most limiting factors in MPCitH protocols since in some ap-
proaches the costs grow linearly with circuit size ([IKOS07], [GMO16]). There are some ap-
proaches, like [AHIV17] and [DdSGOT21], that reduce this dependency and use less com-
munication. This leads to more complex calculations. To address this problem, Giacomelli
et al. presented the ZKBoo protocol that provides efficient proofs for boolean circuits while
reducing circuit complexity [GMO16]. For this, circuit decomposition is used as the un-
derlying MPC protocol. The approach is to break large circuits into smaller subcircuits,
which can be calculated more easily. Since circuit decomposition only needs to satisfy
two-privacy and correctness, which are lower assumptions than traditional MPC proto-
cols, this reduces overhead. This protocol continues to build on the MPCitH paradigm,
but the number of parties is set to three, which leads to further savings in communication.
The successor protocol, [CDG+17], further improves this approach, but remains with a
maximum of three parties. For the comparison of MPCitH and VOLEitH, we want to use
[KKW18] as a representative for MPCitH protocols. We are particularly interested in the
structure of the protocol, the required communication and the computational complexity.

Sketch [KKW18]. One of the most optimised protocols using the MPCitH paradigm was
presented by [KKW18]2 and creates efficient Zero-Knowledge Proofs for boolean circuits
based on symmetric key cryptography. The protocol can be seen in Figure 5.2. In contrast
to [CDG+17], this protocol achieves signatures that are smaller and can be expanded to
include any number of parties.
At the beginning of [KKW18], the prover and verifier get an arithmetic circuit C as a state-
ment. The prover now wants to show that he has a witness w such that C(w) = 1. To
do this, he carries out an offline phase in which he chooses seeds for all N parties and

2We are referring to the e-print archive version (https://eprint.iacr.org/2018/475.pdf), which is
updated and contains bug fixes.
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Initialisation Generate Seeds Offline Phase MPC Commit Off Mask Witness Online Phase MPC Commit Onl

Commit Off/Onl Challenge Set Opening Verify

Offline Phase (M times) Online Phase (M times)

Figure 5.2: Sketch of the [KKW18] protocol. The blue steps are the execution of the MPC

protocol and the commitments, while the orange part indicates the challenge
and the corresponding openings.

commits to them by applying a cryptographic hash function. The prover then masks the
witness using random shares and performs the online phase of the protocol. He simulates
an N -party protocol using the masked witness, the seeds and also commits to the results.
These steps are repeated M times. P then hashes all commitments from the offline and
online phases, which are hashed again and sent to the verifier. V chooses a τ -sized chal-
lenge set, one challenge party for each challenge and sends it to the prover. P opens the
seed and commitment of the online phase for all runs that are not part of the challenge.
For all challenge runs P sends the commitments, the states, the masked witnesses and the
associated output of the MPC protocol which do not contain the elements of the challenge
party, except for his commitment. To verify the proof, V simulates the offline and online
phases of the protocol and checks whether the output matches the hash sent by the prover.
The general structure of the MPCitH protocols discussed so far can also be seen here.
Prover and verifier have a common circuit, the prover calculates the MPC protocol for N
virtual parties “in the head“ and sends the (hashed) commitments to V . The verifier then
sends challenges, the prover opens the commitments and V can check whether the results
are consistent with each other after simulating the prover’s steps.

Communication of [KKW18]. Based on these steps, we now take a closer look at the
communication costs. There are two crucial steps of the protocol that require communica-
tion between the prover and verifier, sending the commitments after completing the MPC
protocol and publishing the openings based on the verifier’s challenges.
After the prover has simulated the MPC protocol “in his head“, he calculates the hashes
for the online and offline phases. In order not to transfer all the values individually, he
hashes them again. Although this leads to an additional step in the calculation of the
proof and thus later in the verification, it also means that only one hash value has to be
transmitted. For a given security parameter κ, the authors use a hash function with output
length 2κ. The communication to send this hash is 2κ.
The openings in this protocol are divided into two parts, the openings for the challenge
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set, which was sent by the verifier, and the openings for all elements that are not part of the
challenge set. This is a special feature of this protocol, as previous MPCitH approaches
only send answers related to the challenges to the verifier. This is due to the cut-and-
choose technique the protocol uses. The idea is that a malicious prover can cheat in the
preprocessing phase, which an honest verifier cannot detect. To prevent that, the prover
opens several of its preprocessing runs to show that everything was calculated correctly.
Since no witness is involved in the preprocessing phase, the security is guaranteed. The
openings to the challenge set are still to check the correctness of the proof and the witness.
In the first part, the prover opens the seeds and commitments for all runs that are not part
of the τ -sized challenge set. So the prover has to open all-but-τ of its M runs. To realise this
efficiently, [KKW18] uses Merkle Trees. The idea is to expand a given seed again and again
using a hash function to create a binary tree. To publish elements, it is enough to publish
the seed, as the rest can be calculated directly from the seed. This ensures that to publish
all-but-τ out of M values, exactly κ·τ ·log(Mτ ) communication is needed. In addition to the
seeds, the commitments from the online phase are also sent, which results in an additional
overhead of 2κ per commitment. This means that 3κ · τ · log(Mτ ) communication costs are
required for this part of the openings.

The prover opens the τ challenge runs and sends all the values to the verifier. FirstP sends
the states and the randomness used in the hashes. Based on the structure of the Merkle
Trees and the all-but-one openings, this requires κ · log(n) amount of communication. This
is needed so that the verifier can independently calculate the commitments to show the
correctness of the prover’s calculations. Since the state of party n also contains the result of
the offline phase of the MPC protocol, an additional overhead is required. The result has
exactly the size of the used and-gates of the circuit, denoted by |C|, and requires exactly |C|
communication. Equivalent to this, the prover publishes the results of the online phase,
which have the same size and therefore also require |C| of effort. P publishes the masked
witness, which can be used later to allow the verifier to simulate the execution of the MPC
protocol. Since the witness itself needs to be protected again, it is masked beforehand, but
since the prover also carries out the calculations on the masked witness, the same proof
is created. Masking only hides the witness but does not expand it, so |w| elements must
be sent. Finally, the prover publishes the randomness used for the commitments and the
commitments themselves. Since the randomness strings are of length κ and the hashes of
length 2κ, this step requires 3κ of communication. This means that this second opening
requires (κ · log(n) + 2|C|+ |w|+ 3κ) of communication.

This results in the following overall complexity for communication:

commCost = 2κ+ 3κ · τ · log(M/τ) + τ · (κ · log(n) + 2|C|+ |w|+ 3κ) .
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5.2.2 Communication of VOLEitH

VOLE correlations can be used to provide very efficient and fast proofs. Protocols like
Wolverine [WYKW21] or Quicksilver [YSWW21] achieve communication costs of one field
element per multiplication gate and at the same time can be calculated mathematically
efficiently [BBdSG+23b]. These protocols allow further optimisations but have the prob-
lem that they are still designated verifier proofs and thus cannot be used for signatures.
[BBdSG+23b] solve this problem, but only at the detriment of an increase in costs, both in
the calculation of the proofs and in the communication between the prover and verifier.
As discussed before, many optimisations have already been incorporated to reduce the
communication effort.

Communication Generalised Subspace VOLE. The costs of the VOLEitH protocol are
made up of two large parts, the costs to construct a VOLE correlation and the round-
specific costs which are used to perform the ZKP. The first part of constructing the VOLE
correlation involves creating and distributing the secret values for the prover (UUU and VVV )
and verifier (QQQ and ∆). In the following, these costs are simply referred to as sVole.
In the first round of the VOLE protocol, the prover has to commit to the witness at the
beginning of the protocol. This step is needed to build a VOLE correlation that confirms
the correctness of the witness without revealing it to the verifier. Since WWW rows consist of
all elements from (www1,www2, ...,wwwℓ) ∈ (FkC

p )ℓ and is masked by UUU1,...,ℓ, the prover must send
a matrix of size ℓ × kC to the verifier. To send an element of Fp, log2(p) bits are required.
This step is specific to the VOLEitH protocol and requires ℓ · kC · log2(p) communication.
After calculating the Quicksilver constraints, the prover sends the masked coefficients. In
general, the prover evaluates t polynomials and has to send the coefficients of all t poly-
nomials to the verifier for checking. However, this would mean that communication is
directly dependent on the size of the circuit since t describes the number of multiplica-
tions. To prevent this, the optimisation presented in [YSWW21] was introduced via an
additional challenge χχχ, as shown in Section 4.2. The idea was to use the characteristic of
degree-separated polynomials and to aggregate all coefficients. This resulted in t coeffi-
cients being represented by the aggregated coefficients for each degree, namely ã and b̃.
The challenge χχχ ensures that the prover sends the correct values, while the respective co-
efficients are still masked using the rows of U1U1U1 and RRR. This means that the prover has to
send two elements of the FkC

p and requires 2 · kC · log2(p) communication effort for this.
To check the coefficients, the verifier needs the values of UUU1 and RRR, which where used for
masking. Since these must remain secret to ensure the secrecy of the witness, the prover
sends the value SSS. To do this, P uses the provided challenge ∆′, which forces him to
send the correct values. While analysing the protocol and communication, we noticed
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that SSS is not an element of F(ℓ+1)×nC
p as described in the paper, but should be an element

of F(ℓ+1)×kC
p . This can be deduced from the structure of UUU1,RRR ∈ F(ℓ+1)×kC

p . This requires
the prover to send (ℓ+ 1) · kC · log2(p) elements to the verifier.

In the last step of the protocol, P sends the second part of his VOLE correlation, the values
of VVV . These are later needed by the verifier to check the correctness of the correlation and
thus verify the proof. As VVV is a big matrix, which consists of (ℓ + 1) × nC elements, this
would lead to a big communication overhead. To prevent this, [BBdSG+23b] presents the
approach that the verifier sends a challenge η. The idea is that η ∈ F(ℓ+1)

p is multiplied by
the message that the prover wants to send and so instead of an (ℓ + 1) × nC matrix, only
a vector of size nC has to be sent. This costs the prover nC · log2(p) communication. The
verifier can also multiply the challenge η on its part of the VOLE correlation and has less
effort to check the values obtained from P .

Viewed over the complete protocol for generalised subspace VOLEs using a linear code,
the communication costs can be summarised as:

commCost = sVole + (2ℓ+ 2) · kC · log2(p) + nC · log2(p) .

5.2.3 Comparison to MPCitH

Based on the elaboration by Baum et al. VOLEitH should provide much more efficient
proofs than the previous MPCitH approaches. To examine this in more detail, we use the
comparison of both protocols from Figure 5.1 and use our analysis of the communication
effort to show where VOLEitH is better or even worse than conventional MPCitH meth-
ods. As before, we use [KKW18] as a representative for MPCitH protocols. An overview
of this is shown in Table 5.3. For the sake of completeness, the verifier communication is
also shown. This is not important for further analysis, because by using the Fiat-Shamir
transform to create signatures, the prover calculates everything and sends it to the verifier,
but the verifier itself never interacts with the prover.

At the beginning both protocols have a preprocessing phase, in [KKW18] it is the offline
phase, while [BBdSG+23b] carries out the interaction with the ideal functionality and the
division of the matrices. Both are independent of the interaction with the verifier and do
not require any communication. A special feature of VOLEitH is that the values for the
VOLE correlation must be created and distributed to the respective party. This requires
a lot of calculations and communication since elements have to be sent sublinearly in the
size of the witness. Another additional step is that the prover masks the witness and sends
it to the verifier. This allows the verifier to later check the correctness of the calculation
and thus check the proof. MPCitH does not need such a step, since later arguments are
always made about the consistency of the views of the individual parties and therefore
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MPCitH VOLEitH

Steps Communication Steps Communication

Initialisation ———- Initialisation sVole

———- ———-
Commit to

Witness
ℓ · kC · log2(p)

———- ———- 1. Challenge t · log2(p)

MPC Protocol ———- VOLE ZKP ———-

Result ———- Result ———-

Commit 2κ
Send Masked

Result
2 · kC · log2(p)

Challenge ———- 2. Challenge log2(p)

Openings
3κ · τ · log(M/τ)+

τ ·(κ·log(n)+2|C|+|w|+3κ)
Answer (ℓ+ 1) · kC · log2(p)

———- ———- 3. Challenge (ℓ+ 1) · log2(p)

———- ———- Answer nC · log2(p)

Verify ———- Verify ———-

Table 5.3: Communication effort based on the steps performed in the protocols. The veri-
fier’s communication is shown in colour and can be ignored after applying the
Fiat-Shamir Transformation.

discrepancies arise in the proof. The results of the preprocessing phase of [KKW18] will
also be partially opened later in the protocol as part of the openings to ensure that the
prover did not cheat during this phase. So the communication effort is only postponed
until a later point in the protocol and thus makes the openings more expensive, but at the
same time does not require an exchange between the prover and verifier before the actual
execution of the protocol.

In the next step, both protocols execute the respective steps of the prover to create a valid
proof for the given witness. Both require no communication between P and V since the
prover executes the protocol “in the head“. To publish the results in the MPCitH scenario,
a commitment is sent from the prover to the verifier. In the specific example of using
[KKW18], this is a hash that contains all information about the offline and online phases.
The authors assume that the hash function for a given security parameter κ has an output
size of 2κ. The size of the security parameter depends entirely on the application and is
usually specified as 128 or 256-bit security for AES. Since the use of such hash functions
is very expensive, the optimisation has already been applied to send only one hash as the
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result of the calculation, which in the end increases the calculation time in the verifica-
tion, but enables a more efficient transmission with less communication. Calculating the
masked result in the VOLEitH scenario is much cheaper, as it only depends on the quality
of the code and the finite field. Every calculation is defined in an extended field above
the F2. Thus, only one bit of communication is required per field element. Since the coef-
ficients of the polynomials are the encodings within the linear code, a code with a lower
dimension kC allows for much more efficient encoding and fewer values to be transmit-
ted. The degree-separated polynomials make it possible to compress the results to such
an extent that only the aggregated coefficients have to be sent. The focus is on degree two
relations, i.e. polynomials with a degree of at most two. Therefore, only two elements are
needed for the aggregated coefficients so that the verifier can check the calculations. This
framework can be extended for arbitrary degree d relations. So VOLEitH is much more
efficient in compressing the results and requires less communication than [KKW18].

Next we take a look at the opening step, which is also the most expensive part of the pro-
tocol. We need to open the provers values to the verifier as the correctness of the proof is
built upon the verifiers simulation of the provers calculations. It has to be ensured that the
secrets of the respective parties remain protected, which is achieved through masking, and
that the verifier is still able to expose a malicious prover. In VOLEitH, P simply sends the
matrix S, which the verifier can use to check the previously sent aggregated coefficients.
The advantage of this is that multiple instances of the protocol, in particular the different
views of the parties, do not have to be published and in addition an efficient representa-
tion via the finite elements of the field Fp is possible. Furthermore, this matrix offers the
possibility to check the calculations of all polynomials without requiring any further ef-
fort. The big difference between this step and the MPCitH method is that the verifier does
not request a subset of the previously calculated values, but rather receives the concrete
calculations for all polynomials. This is because a verifier cannot deduce the secret of the
prover even with all the values of the VOLE correlation and a (malicious) prover cannot
change them in previous phases without being noticed. This means there is no multi-stage
opening, as is the case with [KKW18]. The difficulty in this protocol is that a (malicious)
prover can falsify the values in the preprocessing phase and the verifier must be able to
detect such modifications. For this, the cut-and-choose technique is used, in which P pre-
calculates many preprocessing phases and the online phase is based on these. The verifier
selects τ elements of the online phase that are used for the correctness of the proof and all
other preprocessing phases serve to show that the prover has calculated everything cor-
rectly. This means that a lot of hashes are sent again in the [KKW18] protocol, which are
much more expensive compared to elements of the Fp. Thus the openings with VOLEitH
are significantly cheaper than with MPCitH since the verifier only needs the masked val-
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ues to evaluate the polynomials and can detect errors directly in the VOLE correlation.
With [KKW18] this is much more complicated since a (malicious) prover can cheat in the
preprocessing phase and this has to be found out separately by the verifier. The cut-and-
choose technique is a good approach but requires a lot of communication. As is usual with
most MPCitH protocols, there is again a linear dependency between circuit size, witness
length and overall communication, which also makes this approach particularly suitable
for small to medium-sized circuits. But [BBdSG+23b] also try to be efficient especially for
small to medium-sized circuits, which is easily feasible for AES, and the previous analysis
also shows that VOLEitH requires more expensive and longer calculations for larger cir-
cuits. How this directly affects communication and the size of the proof is not discussed
in the paper and should be investigated further. The poor scalability in both protocols
results from the direct dependency on the size of the circuits. In MPCitH, communica-
tion is required when calculating the binary multiplications to ensure the correct degrees
and calculations. In the generalised subspace VOLEitH approach, there are as many poly-
nomials multiplications. Therefore both protocols got the same dependencies within the
circuit. To reduce the soundness error, both approaches use the repeated execution of the
protocol and the associated openings based on new randomness and new challenges. This
means that the already very high costs in the MPCitH scenario continue to rise, while the
cheaper variant of VOLEitH is better designed for multiple rounds.
In the last part of the protocol, VOLEitH checks the previously sent elements. This requires
an extra challenge, i.e. η, which forces the prover to send the second part of his VOLE
secret masked. This is needed to ensure that the previous elements are codewords of the
linear code and that a malicious prover has not chosen incorrect elements. Optimisations
have also been added here to ensure that only a vector of length nC has to be sent and
not a matrix. This means that the communication effort is directly related to the quality
of the code, in this case, the length of the code words. The resulting overhead can only be
attributed to checking the correctness of the encodings and is not required in comparable
MPCitH approaches.
In summary, the MPCitH approach of [KKW18] requires less communication before and
after the prover executes the proof and sends the associated openings. VOLEitH provides
better data structures for sending data and can therefore publish the results of the proof
and the associated elements needed for verification with less communication. Further-
more, many optimisations were applied to VOLEitH to reduce the communication effort.
These ensure faster calculations and less communication effort, but also a lower adapt-
ability of the protocol.
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Repetition Code VOLE. The VOLE construction over small fields used in FAEST re-
quires far less communication than the generalised VOLE approach described above. One
reason for this is the use of Repetition Codes, as this means that fewer challenges and an-
swers have to be sent to ensure that all encodings are correct. Furthermore, different from
MPCitH, the classic “opening step“ in in which the prover sends all used elements to
the verifier no longer exists. These are advantages that arise from the type of proof, es-
pecially through the VOLE correlation. The prover only has to commit the witness and
then send his part of the VOLE correlation to the verifier. This allows the verifier to check
the correctness of the proof and verify that the witness is correct. Therefore, the neces-
sary communication is reduced to the first challenge from the verifier, which is no longer
necessary after applying the Fiat Shamir transformation, and the masked result from the
prover. Since these are now elements of Fqτ , they require more communication effort than
the previous elements of Fp, but can still be implemented efficiently. Any remaining com-
munication from the previous, generalised version of the protocol is no longer needed.
Notice that we do not present this approach in Table 5.3 as we focus on the generalised
VOLEitH approach due to its proximity to MPCitH.

5.3 Computational Complexity

In this part of the work, we deal with the computational complexity of the prover and
verifier in MPCitH and VOLEitH. The focus is on a high-level description, as the effort
can be significantly affected by parameterisation and the use of different algorithms.

5.3.1 Complexity of MPCitH

For a precise examination of the computational complexity of MPCitH, we again refer to
[KKW18]. A brief overview of the protocol itself is given in Section 5.2.1.

Prover. The big difference between [KKW18] and conventional MPCitH protocols was
the division into a preprocessing phase and the associated online phase. The idea is that
the prover does a lot of calculations in advance and thereby reduces the effort for the
verifier during the verification. Since a malicious prover can cheat in this step, it must be
ensured that all values have been calculated correctly. This step requires a lot of effort,
which can be reduced by using Merkle Trees and hash functions. Below we briefly recap
the computational complexity of both phases.
In the first step of the preprocessing phase, the prover creates the seeds that will be used to
later create the Merkle Trees. To do this he uses an algorithm to create some randomness.
The advantage of seeds is that they can be expanded by using a hash functions and by that

57



5 Comparing MPCitH and VOLEitH

less randomness has to be used in the protocol. This simultaneously leads to more efficient
calculations and easier openings. Since a single Merkle Tree is created for each of the n

simulated parties, n seeds are required. Based on the seeds, P now creates the Merkle
Trees, calculates the offline phase of the protocol and commits to the results. The offline
phase only consists of calculating the aux, which is independent of the witness and allows
the verifier to check the preprocessing. Implementing these calculations is comparatively
easy. The prover calculates the online phase of the protocol by simulating all n parties with
the masked inputs. The input must be masked to ensure the zero-knowledge property of
the witness. These steps are executed M times. To keep the communication effort low, the
prover now calculates the hashes of the online and offline phase for each of the n parties,
combines these into a single hash for the online and offline phase and sends the combined
hash to the verifier. This of course leads to additional calculations within the proof and
also later in the verification, but significantly reduces the communication effort. This is a
common trade-off in MPCitH and other protocols.

Verifier. The limiting factor with MPCitH protocols is that the verifier simulates the
steps of the prover to ensure that he has calculated everything correctly. This means
that prover and verifier complexity behave very similarly to each other. Based on the
cut-and-choose technique and the τ sized challenge set, the verifier first recalculates the
commitments received from the offline phase. Since V only received hashes as a result of
the proof, he must also hash the calculated commitments. This allows him to verify that
the correct values were used in the online phase, but does not ensure that a (malicious)
prover has not cheated. In the next step, he calculates the Merkle Trees based on the seeds
sent for all runs that are not part of the challenge set and determines the associated hashes.
This allows the verifier to ensure that the prover has carried out the offline phase correctly
and at the same time ensures that the preprocessing phase of the elements in the challenge
set remains secret. meaning the verifier does not receive any additional information. By
calculating the commitments in the first step of verification and the openings of the prover,
the verifier now has all the values that the verifier used together with the masked witness
in the online phase and can now simulate this phase for each run of the challenge set. He
calculates all hashes again and combines them, as in the last step of the prover.
In summary, the division into two phases requires many additional steps, which increases
the time required for the prover and verifier. At the same time, these steps also enable the
use of an MPC protocol, which is simple and quick to calculate. This is an advantage over
conventional MPCitH approaches and ensures very efficient signatures.
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5.3.2 Complexity of VOLEitH

Based on the analysis of [KKW18], we now introduce the computational complexity of
VOLEitH. We will first look at the generalised approach of VOLEitH and its comparison
with the MPCitH approach presented above.

Prover. At the beginning of the protocol, the VOLE correlation must be created. This
is done by executing the Ideal Functionality. However, such functionality does not exist
in real-world applications, which is why Baum et al. use the compiler discussed in Sec-
tion 4.2.2. This means that all requests for the ideal functionality are implemented through
Vector Commitments, which are calculated by the prover. The next step is the prover’s
commitment to the witness by sending it masked to the verifier. This is needed to en-
sure the zero-knowledge property and to provide the verifier with the masked witness for
later evaluation of the proof. Since the witness is represented as a matrix, P requires the
subtraction of two matrices, which is linear in the size of these matrices. To calculate the
proof, the prover must evaluate the t polynomials over the masked witness. To do this,
it calculates the respective coefficients of the polynomials on the masked witness, sums
these up and sends them to the verifier. In the two remaining challenges that P receives,
he must again perform linear size operations on matrices to show the correctness of his
proof. After applying the Fiat-Shamir transformation, all of the verifier’s challenges are
now calculated by the prover. To do this, P hashes all the messages that he would send
to the verifier and uses this hash as a challenge. This means that communication between
prover and verifier is no longer required and the verifier is still able to check the correct-
ness of the proof. The protocol is therefore non-interactive and can be used as a digital
signature scheme.

Verifier. During the execution of the generalised Zero-Knowledge Proof for VOLEitH,
the verifier must send three challenges to reduce the communication overhead as well as
a commitment element for the prover. For this purpose, random vectors are drawn. These
are no longer needed after applying the Fiat-Shamir Transformation, as the prover then
selects all challenges and sends them to the verifier. In the first step of the verification, V
calculates the random masking of the witness, which was used by the prover in the proof.
This allows the polynomial to be evaluated at the same points and thereby prove the
correctness of the proof without publishing the witness itself. The verifier also calculates
the coefficients for all t polynomials on the masked witness, sums these up and compares
them with the elements that he received from the prover. Finally, the verifier checks the
correctness of the VOLE correlation. For this, he needs his two elements of the VOLE
correlation and the elements obtained from the prover through the challenges. Notice
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that the verifier has no costs when creating the VOLE correlation, as the prover takes care
of this completely. The prover is forced by the Vector Commitment to use correct values,
otherwise the verifier will notice inconsistencies.

5.3.3 Comparison to MPCitH

After analysing the computational complexity of both protocols, we now compare both
protocols with each other, analogous to Section 5.2. We focus on the bottlenecks of both
protocols. The comparison is also shown in Table 5.4.
The first noticeable thing is the distribution of calculations across the protocol. In
VOLEitH, the prover creates the VOLE correlation at the beginning of the protocol. To do
this, he has to form random matrices, create a valid VOLE correlation and create a Vector
Commitment using GGM Trees. This step is specific to VOLEitH, as checking the correct-
ness of the proof is shown at the end via the VOLE correlation. MPCitH does not require
this as the consistency of the proof is shown later across the openings of each party. Thus,
the prover does not require any additional overhead in this step. Notice that randomness
is still generated later in the protocol and the associated Merkle Trees are created. This step
is also carried out M times and is therefore part of the MPC protocol. This only postpones
the effort and does not eliminate it. The same applies in the subsequent step of VOLEitH,
the commitment to the witness. This step is required so that the verifier can evaluate
the polynomials using the masked witness. The special thing here is that the original
commitment with the elements of the matrix UUU1 is removed in further calculations and a
new masking is carried out using the elements of RRR. This allows the verifier to create the
correct VOLE correlation at the end usingRRR andUUU1 and the verifier can correctly calculate
www · ∆′ without having to unmask www itself. This means that the zero-knowledge property
remains fulfilled. Also in [KKW18] the masked witness is published by the prover so that
the verifier can carry out the later calculations on it. However, only the values for the
challenge set are published, otherwise, a (malicious) verifier would be able to determine
the individual values of the witness based on the values of the preprocessing and thus
break the property of zero knowledge. This is not needed in VOLEitH, since the values
for unmasking are never transferred to the verifier and through this no conclusions can be
drawn about the witness itself. Furthermore, masking using randomness is used in both
protocols to protect the witness and at the same time allow the verifier to check the proof
using the witness’s calculations.
The next step is to calculate the MPC protocol respectively the VOLE ZKP “in the head“
of the prover. The big challenge in [KKW18] is the M repetition of the offline and on-
line phases and the associated cut-and-choose technique. The larger M is, the longer the
prover and verifier need to calculate the proof. At the same time, more communication is
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MPCitH VOLEitH

Steps Prover Verifier Steps Prover Verifier

Initialisation ———- ———- Initialisation sVole ———-

———- ———- ———-
Commit to

Witness
Matrix_Sub ———-

———- ———- ———- 1. Challenge ———- Rand

MPC Protocol

M · n · Rand
M · n ·Merkle
M ·Offline

M · n · Commit
M ·Online
2 ·Hash

———- VOLE ZKP t · Poly_Eval ———-

Result 2 ·Hash ———- Result Summation ———-

Commit Hash ———-
Send Masked

Result
———- ———-

Challenge ———- ———- 2. Challenge ———- Rand

Openings ———- ———- Answer Matrix_Add ———-

———- ———- ———- 3. Challenge ———- Rand

———- ———- ———- Answer Matrix_Add ———-

Verify ———-

τ · Commit
Hash

M ·Offline
(M − τ) ·Merkle
(M − τ) ·Hash

Hash
τ ·Online
τ ·Hash

Hash

Verify ———-

Matrix_Add
t · Poly_Eval
Summation

check_VOLE

Table 5.4: Overview of computational complexity for prover and verifier in MPCitH and
VOLEitH. The costs are generally stated and can vary due to the use of different
algorithms. The verifier’s communication is shown in colour and can be ignored
after applying the Fiat-Shamir Transformation.

required, but the probability that a cheating attacker will not be caught decreases as the
protocol executes more rounds. Therefore, a larger M provides more overhead, but also
more security. There is no such direct connection in VOLEitH. Here a verifier can, sim-
ilar to conventional MPCitH, send several challenges (∆′) and thereby detect a cheating
prover. In addition, VOLEitH does not require as much randomness as the approach de-
scribed above. When creating the seeds for the GGM Tree, randomness is required once.
This also applies to the creation of the VOLE correlation or the challenges of the verifier.
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All further calculations are then executed based on these values. With [KKW18], on the
other hand, fresh randomness is needed in every round to create seeds for new Merkle
Trees for each party. The effort here also increases linearly with the number of parties to
be simulated and the number of runs. The last building block is the commitment used for
the offline phase, which should later enable the verifier to verify the correctness of the pre-
processing phase. This step is specific to this MPCitH protocol since a (malicious) prover
can cheat in the preprocessing phase and only this additional step enables the verifier to
detect this. This step is executed very often and compressed by hashing to keep communi-
cation costs low. None of this is needed with VOLEitH since only the t polynomials need
to be evaluated. Remember, t was the number of multiplications within the circuit, which
is the same as |C| in MPCitH approaches. So the number of polynomials to be evaluated
grows linearly with the size of the circuit, which makes the approach efficient for small
and medium-sized circuits, but can become more difficult for larger calculations. Since the
verifier can carry out every calculation himself and the prover does not have to hold back
any values, no additional calculations are required here in addition to the later challenges.
These are done to allow the verifier to detect a cheating prover and thereby achieve good
soundness in the protocol. For this, the prover needs linear operations in the size of the
matrices in the calculations, with most of these operations being matrix additions.

Another advantage of VOLEitH is that the result of the Quicksilver ZKP can simply be
summed up and does not need to be further compressed for transmission. In [KKW18] this
is much more complicated, as additional hashes are necessary for efficient transmission.
This means that both the prover and later the verifier have to calculate these hashes, but
saves costs in communication. Such savings also exist in Baum et al.’s protocol, using the
challenge η to calculate the answer to the last challenge. This is also an additional step
that the prover and verifier have to execute, which only serves to keep communication
low. Thus, both protocols use techniques to reduce communication and thereby utilise the
trade-off between communication and computational complexity.

The final part is the verification of the proof. As already discussed, the verifier simulates
the steps of the prover in both protocols and then checks whether the values sent by the
prover match the recalculated results. The big difference between [KKW18] and VOLEitH
is the amount of values to be calculated. In VOLEitH, the verifier first calculates the new
masking of the witness to evaluate the common polynomials to the same values as the
prover. Then it calculates the coefficients, compares them with the prover’s coefficients
and then obtains his VOLE correlation values using the all-but-one Vector Commitments,
which were calculated by the prover. These calculations can be carried out very efficiently
because they only contain linear dependencies in the size of the matrices and polyno-
mial evaluation. In particular, the Vector Commitment described above only needs to be
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opened by the prover and does not require any calculations by the verifier. The two pro-
tocols differ fundamentally in this, since in [KKW18] the verifier also has to carry out the
calculation of the Merkle Trees again. This is related to the verification of the preprocess-
ing phase, in which the verifier must ensure that all hashes have been calculated correctly.
To do this, he gets the seeds used by the prover and has to create the associated Merkle
Trees from them. This allows him to calculate the randomness used and the associated
hashes without receiving them directly from the prover. This saves communication and
ensures that the prover has not chosen incorrect values. In addition, V can calculate all
hashes of the preprocessing phase itself and therefore does not have to receive all states
of the prover, which again saves communication. To check the online phase, the verifier
must recalculate all commitments, simulate the online phase and hash the results together.
The hash function used is an important part of the entire protocol, as the complexity of
the calculation accounts for a very large part of the total calculations.

Repetition Code VOLE By using repetition codes and applying them in AES-based sig-
natures, [BBdSG+23b] not only optimise on the necessary communication cost, as dis-
cussed in Section 5.2, but also significantly reduce the computational complexity. These
results are primarily achieved by improving on the calculations with the witness, being
able to use vectors for masking instead of matrices, as well as the removal of the addi-
tional challenges to check the correctness of the sent values. However, this also requires
new, additional operations on repetition codes, such as embedding or lifting into differ-
ent dimensional spaces. This approach took advantage of the fact that AES is defined
above the extension field of F2 and this makes complicated calculations easier to execute.
The calculations within the Quicksilver proof remain as before, only an additional step
is added to calculate the masking of the result. In the verification, the prover now needs
to calculate the additional liftings and embeddings on top, but otherwise only has to cal-
culate the coefficients and check the VOLE correlation. After using the compiler, which
replaces the ideal functionality with Vector Commitments, the calculation of such a com-
mitment by the prover is again required. In this part, we only consider the generalised
VOLEitH approach in Table 5.4, as it is more similar to MPCitH.
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In the previous descriptions, we highlighted some bottlenecks in the execution of MPCitH
and VOLEitH protocols. This chapter now deals with the modification of the protocols for
improved use in digital signatures. We describe the rough idea and the theoretical effects
on the complexity of the protocol.

6.1 Reducing the Amount of Rounds in [KKW18]

The MPCitH approach described by [KKW18] divides the proof into a preprocessing and
an online phase. The cut-and-choose technique is used for verification, which forces the
prover to execute multiple rounds and to carry out expensive calculations, such as build-
ing the Merkle Trees or hashing the results, several times. Reducing the number of rounds
would therefore lead to an improvement in signing and verification time, as the effort
for the prover and verifier would be reduced. In addition, less communication would be
needed as the openings become smaller and thus fewer elements have to be sent.
In a first step, we want to take a closer look at whether the M times of execution of the
prover and the resulting calculations of the verifier can be combined into a single round
without major adjustments to the protocol. To implement this, the prover would only
draw one seed in the preprocessing phase and use it to calculate the Merkle Tree for the
n parties. He then runs the offline and online phases of the protocol and calculates the
commitments for them. Since only one round is executed, the prover does not have to
calculate the final hashes to reduce communication, but can directly send the hash of the
offline and online phases. The problem with this approach is the verification. To check
the preprocessing phase, the verifier receives the seed of the Merkle Trees in the original
protocol. Since only one round was carried out here, there is only one tree and therefore
only one seed. This allows him to reconstruct the entire tree. By that, all states and inputs
of the n parties can be reconstructed. Furthermore, V can learn the mask of the witness
and thus break the zero-knowledge property of the protocol. If the verifier does not check
the preprocessing phase, but only the online part, he can no longer ensure that the prover
has calculated the states and randomness correctly. This means that a (malicious) prover
could cheat in the preprocessing phase without the verifier being able to prevent this.
Therefore, the number of rounds can only be minimised, but not reduced to one round.
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Presume now that prover and verifier run the original protocol but use fewer rounds than
described in the paper. This means that the proof can be calculated more quickly, but
the verifier can use fewer openings to check offline and online phases. This reduces the
probability that the verifier will expose a cheating prover and thus worsens the soundness
of the protocol. Thus, computational and communication complexity will be saved at the
cost of security, which describes the trade-off we discussed before.

6.2 Introducing Vector Commitments into [KKW18]

The first approach of simply reducing the number of rounds without major adjustments
to the protocol itself led to a reduction in security. Therefore, we now want to look at
what happens if we replace individual building blocks of the protocol and thereby save
calculations. In particular, we want to take the approach of [BBdSG+23b] and use Vector
Commitments based on GGM Trees, which replace the previous Merkle Trees. The idea is
to save the recalculation of the Merkle Trees by the verifier and replace it with openings of
the Vector Commitments. This should result in savings in verification time but additional
communication overhead.
In the preprocessing phase, the prover now uses the seeds to construct a GGM Tree. For
this, he needs a collision-resistant hash function and a pseudo-random generator to ex-
pand the seeds. Notice, that he has to calculate a deeper tree because he needs 2n ele-
ments, n for the calculation of the states and n as randomness for the online phase, but
the structure of the GGM Vector Commitments provides that the last expansion creates
an element for further calculation and the second element is the associated commitment
(for detailed information consider Section 2.5). Therefore, more seed expansions need to
be done to create enough elements, resulting in a larger tree. By using the Vector Com-
mitments, the prover can skip the subsequent preprocessing step, the calculation of the
commitments for states and randomness, since he can then use the elements of the last
expansion step of the GGM construction. The prover then carries out the calculation of
the offline and online phases as usual and receives the challenges from the verifier. In the
verification, V recalculates the commitments of all parties that are not the challenge party
for the online phase based on the states and randomness received from the prover. This
step can be saved by the prover performing an all-but-one opening of the Vector Commit-
ment. To verify the offline phase, the verifier has to recreate all Merkle Trees based on the
seeds. By applying the Vector Commitments, the prover can open the commitments and
thus allow the verifier to check all calculations without having to recalculate all elements.
In both steps, the verifier just has to recalculate the hash based on the openings. The rest
of the verification is carried out as before.
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By applying these changes, calculations by the verifier are saved at the expense of commu-
nication and calculations by the prover. The big advantage is that the verification time is
reduced because V does not have to reconstruct the Merkle Trees to check the received val-
ues. This is desirable because when such signatures are used in the real world, for example
in software updates or emails, many entities have to verify the received content, so effi-
cient verification is needed. But this also means that a larger tree and the associated Vector
Commitment have to be created during the preprocessing phase. Unfortunately, there is
currently no evidence whether the GGM construction is more efficient than the creation
of Merkle Trees. So it should be further investigated to what extent the GGM construction
is cheaper or more expensive than creating Merkle Trees to describe the changed effort
of the prover in more detail. However, some improvements can be applied to GGM Trees
([BBM+24], [BCdSG24]) and will help improve this approach, but results in a much higher
amount of communication. The prover no longer has to send all states, randomness and
seeds, but only their commitments. In addition, he also has to open them for verification.
The security of the protocol is still ensured and follows from the hiding and binding prop-
erties of the vector commitments. Thus, the introduction of Vector commitments in the
[KKW18] protocol leads to an improved verification time, as not all values have to be re-
calculated. The prover has to build larger trees and calculate a vector commitment, which
can lead to more effort and require more communication.

6.3 One Tree Approach

What remains with the previous adjustment are the M rounds of preprocessing. In 2024,
[BBM+24] presented FAESTer, a new VOLEitH-based signature and improvement of the
FAEST algorithm presented in this work. The new idea is to create all the randomness
necessary for the calculations from a wider GGM Tree and thus reduce the creation and
expansion of seeds. We now want to apply this to the previously described scheme to save
costs in the preprocessing.

In the preprocessing step, the verifier usually creates M seeds and calculates the resulting
Merkle Trees. With the introduction of Vector Commitments, described in Section 6.2, this
step is replaced by building a GGM Tree and the associated Vector Commitment. Since
the creation of the seeds and their expansion are still executed M times, this approach is
still very expensive. Therefore, the idea of [BBM+24] can now be applied by replacing the
M times drawing of seeds and GGM Tree expansion with computing a large tree based
on one seed. This GGM Tree contains more elements because it has to create all the values
for the M executions of the offline and online phase of the MPC protocol, but at the same
time saves the creation of many seeds and expansion steps. Afterwards, the prover and
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verifier perform the normal protocol as described in section 6.2.
These changes to the protocol do not ensure that all rounds of preprocessing can be saved.
However, creating the seeds and calculating the resulting trees is the most complex and
therefore expensive step of this phase. This means that the prover has to carry out fewer
calculations, which leads to an improvement in the signing time. But there is still an
increased communication effort due to opening the Vector Commitments during verifica-
tion. This approach can therefore be used to achieve improvements in the use of GGM
Trees and Vector Commitments in the [KKW18] protocol, but to what extent this is practi-
cal and more efficient than calculating the Merkle Trees needs to be further investigated.
Notice, that this type of tree extension can also be applied to Merkle Trees. However, the
previous form of the protocol cannot be used for this, as it publishes the seeds of the indi-
vidual trees to verify the preprocessing phases. Since this would compromise the security
of the protocol if there was only one tree, the protocol would have to be adapted to allow
for a large Merkle Tree.
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This chapter summarises the results of this thesis and describes some ideas for future
work.

7.1 Summary

In this work, we have shown a detailed description of the VOLEitH approach, a compar-
ison to MPCitH and improvements to digital signatures. In the beginning, we explained
the basic idea behind VOLE and showed the extension of Oblivious Transfer to SoftSpo-
kenOT. We showed how SoftSpokenOT creates VOLEs over any polynomial-sized field
and how the consistency of the VOLE correlation helps to be secure against malicious
senders. Based on this, we explained the generalised subspace VOLE approach used in
VOLEitH. The idea is that there is no restriction on the size of the field, but all calculations
are performed on a subfield of polynomial size. This means there are fewer limitations,
but the SoftSpokenOT approach can still be used.
To develop a better understanding of digital signatures and create a good basis for
VOLEitH, we took a closer look at Zero-Knowledge Proofs using MPC protocols. To
do this, we presented the MPCitH approach, where the prover executes an MPC protocol
by simulating n parties “in the head“. We also showed how the Fiat Shamir Transfor-
mation can be used to construct a non-interactive proof, which forms a digital signature.
Building on this, we introduced VOLEitH. We have described the individual rounds in
detail and discussed why the individual steps are necessary. We have also shown which
security mechanisms are in the protocol against a malicious prover. We discussed the idea
behind FAEST, the first VOLEitH-based signature, and have shown that FAEST is a very
specific protocol that was very tailored to AES and is therefore not very generalisable.
The authors of VOLEitH emphasise in their paper that their approach is up to twice as fast
as comparable MPCitH protocols. Since it was not immediately obvious to us why this
was the case, we provided a comparison of MPCitH and VOLEitH. We looked at general
similarities and differences, which showed that the structure of both approaches is very
similar, but the generalised subspace VOLEitH approach requires significantly more steps
to protect against malicious provers. We have worked out a few bottlenecks where we
saw room for optimisations and described some significant trade-offs. We further looked
at communication and calculation complexity. Since MPCitH is a very general approach,
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we decided to use [KKW18] as a representative for MPCitH protocols in the comparison,
as it is very optimised. We have explained the general structure of [KKW18] in more detail,
which achieves optimisations by dividing the steps of the prover into an offline and online
phase. The subsequent comparison showed that although VOLEitH has to carry out more
steps, but they are cheaper to calculate and can also be sent efficiently. However, there is a
clear difference between the generalised VOLEitH approach and the optimised variant for
FAEST, as many additional steps are saved through lifting and embedding in repetition
codes and more efficient data structures can be used.
In the final part of this work, we use the previously collected knowledge to develop opti-
misations for digital signatures. Since the VOLEitH approach and the signatures based on
it are already very optimised, we primarily looked at the [KKW18] protocol. It turned out
that the expensive calculation of the Merkle Trees by prover and verifier is a bottleneck
and that the preprocessing has to be carried out M times is also a limitation. Thus, we tried
to combine the M rounds into one without fundamentally changing the structure of the
protocol. This is not possible because the verifier is then able to learn the prover’s secret
or is no longer able to detect a cheating prover. Based on the VOLEitH approach, we then
used Vector Commitments using the GGM Tree construction to calculate the randomness
and commitment of the offline phase. This means that the prover has to calculate larger
trees to represent the entire randomness, but the verifier does not have to recompute all
the trees but can check the provers commitments. In this way we achieve a theoretical
improvement in the verifier time, but an increase in communication. Unfortunately, there
are no comparisons of GGM and Merkle Trees, so it is not possible to estimate whether one
approach is more efficient than the other. Based on the elaboration of [BBM+24], we also
described how the M -fold calculation of the Vector Commitments from different GGM
Trees can be combined into one large Vector Commitment using a single GGM Tree. This
again requires the calculation of a larger GGM Tree but saves multiple steps of recalcula-
tion and allows the Vector Commitment to be calculated more efficiently.
In summary, we have shown how VOLEs can be created based on Oblivious Transfer.
With MPCitH and VOLEitH, we presented two approaches to create Zero-Knowledge
Proofs. Such interactive protocols can be transformed to be non-interactive using Fiat
Shamir Transformation. It can be shown that such protocols are post-quantum secure
signature schemes. We compared MPCitH and VOLEitH, highlighted bottlenecks and
described theoretical optimisations of [KKW18].
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7.2 Future Work

In this section, we note a few approaches for future work.

Optimisations on VOLEitH. Based on its calculation of the masking and the evaluation
of the polynomials, VOLEitH is very efficient in terms of the calculation complexity and
the required communication. Nevertheless, the size of all matrices and the number of
polynomials is directly dependent on the circuit size. VOLEitH achieves good results for
small and medium-sized circuits but is not very efficient for very large circuits. Therefore,
it should be checked whether this dependency can be solved. One approach could be to
consider only a subset of the and-gates. This could save calculations, but would probably
also increase the soundness error. Additionally, it is necessary to ensure that the omitted
and- gates are chosen randomly so that the attacker cannot learn which values are being
checked by the verifier.
Furthermore, it should be investigated to what extent the generalised VOLEitH protocol
can be implemented in practice. Previous work focused on the small-field version, which
is also used in FAEST. This shortens many steps of the subspace VOLE protocol for arbi-
trarily big fields and allows calculations to be performed more efficiently. Therefore, the
generalised protocol should also be tested in practice.

Implementation of Modifications. During this work, we presented the MPCitH and
VOLEitH approaches in detail, highlighted bottlenecks and developed modifications to
the [KKW18] protocol. Since we have only given a high-level description of the changes
and their supposed impact on complexity and security, the next logical step would be
to have them practically implemented and tested. The focus should be primarily on the
adjustments to the protocol and their effects on the creation of digital signatures, as im-
proving such signatures was also part of this work.

Merkle Trees against GGM Trees. As we have already discussed in Section 6.2, there
are no known works on the complexity of creating Merkle Trees or GGM Trees. Therefore,
we cannot determine whether the optimisations presented improve on the existing work.
In the worst case, our optimisations might even slow down the protocol, should it turn
out that creating Vector Commitments via GGM Trees is much more complicated than the
normal commitments via Merkle Trees. Consideration of this topic can also bring further
advantages in improving MPCitH and VOLEitH since many of the protocols rely on such
trees.
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