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Abstract

As the demand for secure and privacy-preserving distributed machine learning solutions
grows across numerous areas of application, the importance of enhancing the efficiency
and applicability of such solutions becomes increasingly paramount. The DASH frame-
work approaches the problem of secure machine learning by deploying optimized arith-
metic garbled circuits, where large quantized floating-point inputs are scaled down to
smaller integer domains for deeper neural networks. This allows DASH to securely oper-
ate on more complex network topologies, enabling a broader range of applications. Pre-
vious research has identified that rescaling during circuit evaluation poses a significant
performance bottleneck. To address this, we propose an improvement to DASH’s scaling
operation on integer residues by generalizing beyond the current limitations of the scaling
factor. This leads to enhanced network inference speed and memory efficiency: Our so-
lution improves both metrics by a logarithmic factor. Furthermore, as a side contribution,
we showcase a garbled pooling operation for DASH, which further expands the range of
supported neural network layouts, thereby increasing the versatility of the DASH frame-
work.
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1 Introduction

1.1 Motivation

The application of machine learning solutions has become a pivotal method for analyzing
expansive datasets, particularly in domains where conventional algorithmic approaches
prove insufficient. These domains encompass a diverse range of applications, including
image recognition, genome analysis, finance, and autonomous driving. The significance
of data privacy is evident in these applications, with certain cases subject to regulations
such as the GDPR [Com16]. The escalating prevalence of data breaches, especially in
sensitive areas like healthcare [FGR16], underscores the critical need for the development
and implementation of robust and effective security measures.

In various scenarios, multiple parties collaborate on machine learning projects, necessi-
tating the protection of confidential data from unauthorized access. This scenario is com-
monly referred to as secure machine learning. In fields like medical research, where client
data and machine learning models are often kept separate, secure machine learning col-
laborations can benefit both clients and researchers.

One secure machine learning solution called DASH utilizes garbled circuits (GCs) as its
primary cryptographic tool and was developed by Sander et al. [SBBE23a]. It advances
previous results by Ball et al. [BMR16, BCM+19]. This thesis aims to build upon DASH’s
current implementation and introduce improvements to their solution.

1.2 Related Work

Several other secure neural network (NN) inference implementations have utilized GCs
before the DASH approach. For example, in 2017, Mohassel et al. [MZ17] incorporated
GCs into select components of their SecureML framework. Later, Rouhani et al. [RRK18]
developed DeepSecure, which marked a significant milestone as the first viable GC-only
solution for this problem. Additionally, there have been notable hybrid approaches that
combine Fully Homomorphic Encryption (FHE) schemes and GCs, focusing on using the
latter only for the non-linear NN components such as activation functions. Two such ex-
amples are Gazelle[JVC18] and Delphi[MLS+20]. Furthermore, FHE-exclusive approaches,
such as CryptoNets[GBDL+16] and its successor Faster CryptoNets[CBL+18], have also been
explored, aiming to approximate all non-linear NN components.

1



1 Introduction

1.3 Research Questions

The goal of this thesis is to improve the capabilities of the DASH framework by two dis-
tinct metrics: Firstly, we aim to improve DASH’s runtime performance in order to make
a further step towards user-friendly secure machine learning inference. Secondly, we try
to make DASH compatible with more real-world examples of (pre-trained) models by
implementing currently unsupported NN layer classes. Such layers currently have to be
approximated and replaced by other NN techniques, hindering the real-world applicabil-
ity of DASH.
Performance benchmarks conducted with realistic deep NN topologies indicated a signif-
icant performance bottleneck induced by repeated scaling of discretized feature vectors in
DASH, cf. Figure 1.1.
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Figure 1.1: Runtime distribution by layer type for various NN topologies. Models F and f
are the deepest and require rescaling of feature vectors during inference. Mea-
surements conducted by [SBBE23a].

This limitation is caused directly by a limitation to the scaling factor, as will be discussed
in detail in Chapter 3. Therefore, our first research question is:

1. What techniques could advance runtime performance of the secure machine learning frame-
work DASH? How can we generalize DASH’s scaling-by-two operation to scale by a wider
range of scaling factors?

DASH’s secure machine learning approach is geared towards convolutional NNs, which,
in most cases, deploy a pooling operation after each convolution layer. While in theory,
this pooling operation can be circumvented by adjusting the convolutions’ stride param-
eters and retraining the model, supporting a wide range of pre-trained models would
improve DASH’s applicability. We thus arrive at our secondary research question:

2. How can we implement a (max-)pooling operation using arithmetic GCs and integrate it in
DASH?
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1.4 Thesis Structure

1.4 Thesis Structure

Before explaining the DASH framework in detail in Chapter 3, we will first provide an
overview of the theoretical background relevant to our work. This includes discussing
the fundamentals of NNs, residue number systems (RNS), and GCs in Chapter 2. Af-
ter contextualizing the state-of-the-art of the DASH framework, we will then detail our
central theoretical result - a novel approach to garbled base extension (BE) for arbitrary
moduli - in Chapter 4. An in-depth examination of the implementation details for our
solutions to both research questions will be presented in Chapter 5. Finally, in Chapter 6,
we will thoroughly evaluate our approach from both a theoretical and experimental per-
spective before providing a conclusion and discussing possible directions for future work
in Chapter 7.

3





2 Preliminaries

Our work revolves around the application of a cryptographic approach to the context of
machine learning. This cryptographic approach combines the GC protocol with residue
number representations. In this chapter, we will introduce some general machine learn-
ing preliminaries, then discuss RNS on an abstract level, and finally showcase our crypto-
graphic protocol.

2.1 Secure Neural Network Inference

The discipline of secure machine learning constitutes a subset of the broader field of secure
function evaluation. This field focuses on enabling multiple parties to jointly compute a
function without revealing their individual inputs to one another: Alice and Bob each
hold one component of an input tuple (a, b) to a function f . They seek to evaluate f(a, b)

while not leaking their input contribution to the other computing party. This problem can
be generalized for an arbitrary number of parties with respective inputs a, b, c.... In the
case of two input parties, this problem is also referred to as secure two-party computation,
while the general case is referred to as secure multi-party computation. In our case, that is in
the context of secure machine learning, f may either be

1. the classification function Φ(x, θ), to which Alice provides the trained model θ, and
Bob provides an input feature vector x that shall be classified or

2. the training function dictating how the weight parameters of θ shall be adjusted,
given the current state of the trained model θ and the training input data provided
by Bob.

In this thesis, we will explore an approach to the first case, where during the classification
phase, the input data x shall remain inaccessible to the public, while its classification result
may optionally be queriable by one or more parties. Furthermore, the provider of the
model parameters θ (the classifying party) shall never know the contents of x, and neither
should any user other than the provider of x. This approach aims to preserve the privacy
of the input data while enabling the classification task to be performed in a secure and
controlled manner.
In some cases, θ is not met with the same treatment as x regarding confidentiality. This is,
for example, currently the case in DASH, the framework this thesis extends. The original
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2 Preliminaries

authors of DASH argued that due to common NN model extraction attacks [CJM20], this
goal is unrealistic in most scenarios.

Now let us discuss some formal preliminaries regarding NNs, including the already men-
tioned model θ and the network’s input feature vector x.

Neural Networks

The concept of a neural network (NN) serves as the theoretical foundation for a multi-
tude of modern machine learning achievements, including image and face recognition,
autonomous driving, and search algorithms. NNs offer a powerful approach to approx-
imating complex, unknown mappings by utilizing an iterative training procedure that
generates a range of feature correlations. This iterative training allows NNs to surpass the
accuracy and expressivity of traditional training methods, such as linear regression. The
objective of this thesis is to apply cryptographic techniques to such NNs, thereby enabling
secure machine learning. To accomplish this, we will first need to define the fundamen-
tal principles of both fully-connected and convolutional NNs, which are widely used in a
variety of machine learning applications.

The core architectural components of a traditional NN are fully connected (dense) layers
and activation layers, which are applied in an alternating sequence during network eval-
uation. Each layer Φ(1), ..,Φ(L) processes an input vector x ∈ RNl and transforms them by
various means in neurons Φ(l)

1 , ..,Φ
(l)
Nl

, with Nl being the number of neurons of the lth fully
connected/activation layer and L the total number of such layer pairs.

The fully connected layers perform a linear transformation on the input vector, consisting
of a matrix multiplication with a corresponding weight matrix W followed by the addi-
tion of a bias vector b ∈ RRl . In contrast, the network’s activation layers apply a non-linear
transformation, using a unary activation function ϱ : R → R, to the output of the preced-
ing fully connected layer. A widespread choice for activation is, for instance, the Rectified
Linear Unit (ReLU) defined as ReLU(x) = max(0, x), which we will later encounter again
in an entirely different setting in Section 5.1. The non-linearity of the ReLU function is
depicted in Figure 2.1. We now arrive at the following formal definition of (deep) fully
connected NNs.

Definition 2.1.1 (Fully Connected Neural Network). A fully connected neural network
with architecture N0, .., NL and activation function ϱ is a mapping Φ(x, θ) ∈ RNL with
input x = (x1, .., xN0) and weight and bias vectors θ = (θ(l))Ll=1 = ((W (l), b(l)))Ll=1.

The result of the mapping is referred to as the output layer of the network and is defined

6



2.1 Secure Neural Network Inference

−4 −2 2 4

2

4

x

ReLU(x)

Figure 2.1: Plot of ReLU(x) for x ∈ [−4, 4].

as Φ(x, θ) = Φ(L)(x, θ), where for all l ∈ [L− 1]

Φ(1)(x, θ) = W (1)x + b(1) (input layer), (2.1)

Φ
(l)
(x, θ) = ϱ(Φ(l)(x, θ)), (activation layer), (2.2)

Φ(l+1)(x, θ) = W (l+1)Φ
(l)
(x, θ) + b(l+1) (fully connected layer), (2.3)

Note that in Equation 2.2 the function ϱ : R → R is applied element-wise. If L > 3, the
network architecture of Φ is referred to as deep. All layers that are neither input nor output
layers are referred to as hidden layers.

Such networks can be visualised using a graph representation, depicting neurons as ver-
tices and weighted correlations as edges, cf. Figure 2.2.

Training

The accuracy of a NN directly depends on how its model parameters θ are selected. To
increase an NN’s accuracy, one must find values for θ that yield results closer to the correct
solution of the problem at hand, such as image classification that is statistically more often
correct. To quantify this error, a data set (x(i),y(i))m̃i=1 consisting of input data and label
pairs is required. Otherwise, no notion of the correct solution could be derived. This
data set must then be split into training data (x(i),y(i))mi=1 and testing data (x(i),y(i))m̃i=m:
The training data will be used to determine a better choice for θ, while the testing data
set serves to verify this result. The exact choice of m is a matter of preference, though
generally, the training data set is larger than the testing data set, i.e., m > m̃

2 . The idea
of what constitutes a better set of parameters, i.e., a better θ, must now be more formally
defined. This whole process is an optimization task that can be reduced to decreasing
the empirical risk of failure, as defined below. Specifically, the empirical risk refers to the
measure of how well the model performs on the observed training data, and the objective

7



2 Preliminaries
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Figure 2.2: Graph representation of deep fully connected NN Φ with L = 4. Activation
layers (Φ) are not displayed.

is to find the optimal parameters that minimize this empirical risk.

Definition 2.1.2 (Empirical Risk). The empirical riskR of a neural network Φ with weights
and biases θ is defined as

R(Φ, θ) = 1

m

m∑
i=1

(
Φ(x(i), θ)− y(i)

)2
(2.4)

where (x(i),y(i))mi=1 is the training data set of Φ.

The metric R can be considered the mean squared error between the model output
Φ(x(i), θ) and the target values y(i). To evaluate the accuracy of the newly trained net-
work, we determine to what extent the goal of our network

∀i = m+ 1, ..., m̃ : Φ(x(i), θ) ≈ y(i) (2.5)

is attained. There are different ways of solving the above-mentioned empirical risk-based
optimization problem. Traditionally, gradient descent on the risk functionR or a variation
of it that does not take into consideration all point-wise derivatives but only a subset,
called stochastic gradient descent [RM51], is used here. Such derivatives can accurately
be determined by a numerical algorithm called backpropagation, details on which can be
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2.1 Secure Neural Network Inference

found in [GW08]. As we will not be training the model parameters θ ourselves, we will
not further discuss these optimization algorithms in detail.

Convolutional Neural Networks

Convolutional NNs (CNNs) form a new class of NNs and are what DASH’s secure infer-
ence is built for. We are no longer limiting feature vectors to be one-dimensional, i.e.
generalize x to be a tensor. You can also apply this generalization to FCNNs, for instance
when operating on two-dimensional image data. In literature, such tensors are still called
feature vectors regardless of dimensionality, and therefore we stick to this nomenclature.

When identifying local attributes in input data, such as in the previously mentioned im-
age classification example, it becomes apparent that dense layers provide correlations
that may prove inconsequential during the inference process. Reducing these correla-
tions would, while not enhancing the neural network’s expressive capacity, significantly
reduce the size of θ, enabling the deployment of deeper and wider network topologies. In
numerous cases, local patches or kernels of limited size are sufficient to establish a relation-
ship between an input neuron and other neurons in its immediate vicinity. Furthermore,
the features detected in this manner exhibit invariance to primitive transformations like
rotation or translation.

A widely utilized operation in this context is convolution, which originates from the field
of image processing. For a pair two-dimensional tensors w = (w−a,−b, ..wa,b) and =

(x1,1, ..xc,d) (e.g. a weighted kernel and an image) it is defined as

(w ∗ x)(x, y) =
(a,b)∑

(dx,dy)=(−a,−b)

(wdx,dy) · (xx−dx,y−dy). (2.6)

The use of convolutions in NNs was first proposed by Fukushima in 1980 [Fuk80] and
then significantly advanced by LeCun et al. in 1989 [LBD+89], who introduced the mod-
ern architecture we will now explain in further detail. Usually, the goal is not to extract a
single local property using convolutional filtering but rather to capture a list of features.
This is modeled by a list of kernels k1, .., kC , where C ∈ N represents the number of chan-
nels or feature maps in that layer. In that case, the above mentioned kernel list replaces the
weight and bias pair θ(l), i.e. for a convolutional layer θ(l) = (ki)

C
i=1.

This convolutional operation is then followed by a pooling operation p reducing the size of
each individual feature map in all dimensions by either averaging, finding the maximum
element or other means of reducing multiple elements (e.g. 2 × 2 entries) to one. The
pooling operation is parametrized in terms of kernel sizes per dimensionality and a stride
value that determines the step size by which this kernel moves across the input data.

9



2 Preliminaries

For example, if the stride value is smaller than the pooling operation’s kernel sizes, the
kernels overlap. As we will later discuss our implementation of (garbled) max-pooling in
Chapter 5.1, the corresponding function pmax for two-dimensional input and kernel sizes
KX ,KY = 2 in visualized in Figure 2.3.

7 9 3 5 9 4

0 7 0 0 9 0

5 0 9 3 7 5

9 2 9 6 4 3

pmax

9 5 9

9 9 7

KX = 2

KY = 2

Figure 2.3: Visual representation of two-dimensional pmax for KX ,KY = 2 on examplary
2 × 3 integer input. Strides are identical to kernel sizes and are not explicitly
depicted.

Down-sampling of the convolution’s feature maps serves the purpose of making the net-
work more robust to slight variations in input data patterns. For example, in image recog-
nition, pooling layers even out small translations (e.g. rotation, shift) during image feature
extraction. Furthermore, it limits layer input size expansion. This leads us to the following
definition of a convolutional NN:

Definition 2.1.3 (Convolutional Layer and CNN). In a neural network, a convolutional
layer Φ(l) with C ∈ N channels and kernel list θ(l) is defined as

Φ(l)(x, θ) = (p(Φ
(l)
(x ∗ ki, θ)))Ci1 , (2.7)

where k1, .., kC ∈ θ(l) and p is a pooling operation. A convolutional neural network (CNN) is
a neural network containing one or more convolutional layers.

Typically, a CNN comprises multiple convolutional layers, which are then flattened, re-
ducing the multi-dimensional collection of feature maps to a one-dimensional vector. This
vector is subsequently fed into a standard, fully connected neural network, as outlined in
Section 2.1.1. Analogously to the visual depiction of an FCNN found above in Section
2.1.1, a visual representation of a convolutional NN is depicted in Figure 2.4.

10



2.2 Residue Number Systems

Figure 2.4: Graph representation of a deep convolutional neural network. Image taken
from [BGKP21].

2.2 Residue Number Systems

In our secure machine learning solution we apply cryptographic means to discretized
integer representations x of elements in feature vectors denoted by us as x. While the
exact protocol details will be given later in Section 2.3, it suffices to know that we map a
large number of cleartext integers to encrypted ciphertexts, which expand drastically for
larger x. It would thus be beneficial if we could instead of encrypting one large x, opt for
several smaller x1, ..xk that store identical information. In order to avoid confusion, we
reiterate: x are feature vectors, x are discretized elements of such a feature vector, and now
we try to express one x by storing its information in multiple smaller xi.

The Chinese Remainder Theorem

Luckily, a well-known result in number theory dating back to at least the fifth century
allows us to do just that by utilizing modular residues. Let Pk be the k-th primal modulus, i.e.
the product of the first k prime numbers. We can represent all members of Z/PkZ =: ZPk

using their modular residue respective 2,3,...,pk where pk is the k-th prime number:

Theorem 1 (Chinese Remainder Theorem). For arbitrary coprime moduli p1, .., pk and re-
spective residues [x]1, .., [x]k, there exists a unique x such that

1. 0 < x <
∏n

i=1 pk and

2. [x]i = x mod pi for all i = 1, .., n.

Note that for the Chinese Remainder Theorem (CRT) it suffices that all pi are coprime,
which is obviously the case for our choice of moduli. This CRT representation or residue
representation ([x]i, .., [x]k), often referred to as a member of a residue number system (RNS)

11



2 Preliminaries

(p1, .., pk), can be transformed back to its integer representation x efficiently as seen in
Equation 2.8:

x =
k∑

i=1

αi · [x]i mod Pk, (2.8)

where αi = A−1
i · Ai and Ai =

Pk
pi

. An examplary RNS with k = 3 can be found in Table
2.1.

x [x]1 [x]2 [x]3
0 0 0 0
1 1 1 1
2 0 2 2
3 1 0 3
...

...
...

...
26 0 2 1
27 1 0 2
28 0 1 3
29 1 2 4

Table 2.1: Residue representation of x = 0, .., 29 with moduli p1 = 2, p2 = 3, p3 = 5.

Residue Arithmetic

Modular addition and multiplication on (all of) these residues can be trivially constructed
by mapping the integer operation to the integers’ residue representations. Let ⋆ ∈ {+, ·}.
Then for some x, y with respective residues ([x]1, .., [x]k) and ([y]1, .., [y]k)

x ⋆ y mod Pk ←→ ([x]1 ⋆ [y]1 mod p1, .., [x]k ⋆ [y]k mod pk), (2.9)

where←→ means equivalence by the means of the CRT. This also covers subtraction, as
modular subtraction by y is equivalent to adding Pk − y, i.e the additive modular inverse
of y.

One central drawback in using residue representations is that many other operations are
not as trivially constructable. Most importantly for our purposes is the difficulty of model-
ing division in RNS. In this thesis, we will bring the special case of scaling, that is division
by arbitrary pi, to DASH’s arithmetic GCs in order to enable downsampling of interme-
diate values in NN inference. Further detail and motivation behind (garbled) scaling will
be given when discussing DASH’s current scaling capabilities in Chapter 3.

12



2.2 Residue Number Systems

Associated Mixed-Radix Systems

We will now describe a central building block of our solution regarding the problem of
generalized BE, namely mixed-radix systems (MRS). Note that this section will not contain
its application, i.e. the BE algorithm, as this will be done later when describing our ap-
proach in Chapter 4.

Usually, number systems share one radix across all digits of a number, for instance 2 in the
binary number system or 10 in the decimal one. Even though it may seem odd at first, a
multi-digit representation of some integer x can just as well be expressed using potentially
varying radices R1, ..RN−1 where N is the number of digits of x in mixed radix form. More
precisely, any x <

∏N
i=1Ri − 1 can be expressed as

x = aN

N−1∏
i=1

Ri+, ..,+a3R1R2 + a2R1 + a1, (2.10)

where ai are the mixed radix digits of x for some radices Ri. Generally, radices act as a
carry-over from less significant digit positions 1, .., i− 1 to the respective i. This becomes
intuitively clear when picturing the above mentioned everyday examples of R1, R2, .. = 2

(the binary number system) or R1, R2, .. = 10 (the decimal number system). An example
for nonidentical R1 = 2, R2 = 3, R3 = 5 can be found in Table 2.2.

x a1 a2 a3
0 0 0 0
1 1 0 0
2 0 1 0
3 1 1 0
...

...
...

...
26 0 1 4
27 1 1 4
28 0 2 4
29 1 2 4

Table 2.2: Mixed radix representation of x = 0, .., 29 with radices R1 = 2, R2 = 3, R3 = 5.

For each RNS (p1, ..pk) there exists a unique MRS with Ri = pi called the associated MRS
for this RNS. For instance, the MRS depicted in Table 2.2 is the associated MRS of a RNS
with k = 3. We can construct its digits a1, ..ak as follows [ST67]:

ai =

[x]1, for i = 1,

x−ai−1

pi−1
mod pi, otherwise.

(2.11)
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This general recursive property presented in Equation 2.11 is the foundational idea of the
BE algorithm later discussed in Section 4.

2.3 Garbled Circuits

The central cryptographic protocol behind DASH and many alternative solutions to secure
machine learning inference is the garbled circuit (GC) protocol. As this is where all possible
optimizations to the current framework lie, an overview of the protocol and its continous
advancements during the last 35 years will now be given.

Yao’s Protocol

One solution to secure MPC was proposed by Yao[Yao86] in 1986: Given some operation
in binary circuit representation, one party (the garbler) transforms the non-secure variant
of each of the circuit representation’s gates f : Z2 → Z2 to a secure (garbled) variant.
For each of the two input wires two encrypted input labels l0 and l1 are chosen randomly
representing 0 and 1. In similar fashion, output labels for the gate’s output wire are chosen.
Following this, the garbler produces an encrypted truth table using the input wires as
symmetric encryption keys by computing Enclain1

,lbin2

(l
f(a,b)
out ) for all a, b ∈ Z2 where in1, in2

are the garbled gate’s input wires and out is its output wire.

The central idea is that during evaluation, only the output label corresponding to a given
(encrypted) label input can be decrypted. To prevent cleartext output deduction, the truth
table ordering must be randomized. During the actual multi-party computation, the GC
is traversed by an evaluator party that only learns the (garbled) output corresponding to
one input, but not the other parties’ input or other possible outcomes of the evaluation,
i.e. the circuit’s underlying function. GCs can only be evaluated once, since otherwise the
evaluator may be able to deduct which labels correspond to 0 or 1. Note that from now on
we will assume that each (binary) GC only consists of AND and XOR gates, as arbitrary
boolean functions can be constructed from these two operations.

During evaluation, the two parties usually communicate via a 1-out-of-2 oblivious transfer
(OT), where neither party learns the (binary) input choice of the other.

Garbled Circuit Optimizations

Several optimizations to the above mentioned initial protocol proposed by Yao have been
made to make GCs more efficient while remaining secure. While for our purposes the
most central change is the generalization from binary GCs to arithmetic GCs, we first
need to describe three central advancements for the former:
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1. Point-And-Permute (Beaver et al. [BMR90]) While the ordering of (encrypted) truth
table entries in the original protocol is not known to the evaluator, this technique
allows to determine which of the four truth table entries to decrypt by appending a
color bit p ∈ Z2 to the gate’s input labels.

2. Free-XOR (Kolesnikov et al. [KS08]) By choosing l1 = l0 ⊕ R for some pre-defined
circuit wide constant R, we can evaluate garbled XOR gates by simply executing a
single XOR operation on garbled input labels without any additional computational
overhead, i.e. compute x⊕ y by evaluating l0x ⊕ l0y.

3. Half-Gates (Zahur et al. [ZRE15]) This optimization allowing for AND gates to only
require two garbled ciphertexts (distributed between the garbling and evaluating
parties) is the current state-of-the-art in regards to efficient AND gate evaluation in
GCs. Unlike Free-XOR, this optimization does not result in free operations, meaning
that AND gates still present a bottleneck for binary GCs.

Arithmetic Garbled Circuits

Arithmetic GCs are derived from traditional (binary) GCs by generalizing these three cen-
tral advancements. The motivation for this generalization is that the major workload of
NNs consists of arithmetic operations. Even though arithmetic GCs do not allow for arith-
metics over R, quantization techniques (as introduced in Section 3.2) enable us to map float-
ing point values to integer rings. The following generalization was first proposed by Ball
et al. [BCM+19].

While the binary circuit representation of arithmetic operations over Zn produces high
fan-in gates for larger n ∈ Z, arithmetic circuits allow us to utilize residue number repre-
sentations, reducing gate size expansion even for large n very effectively: By generalizing
labels from sequences of Z2 to sequences of ZPk

, we are required to not only define l0 and
l1, but la for all a ∈ ZPk

. We observe that the size of each input- and output label la is
no longer invariant, but is affected by the size of Pk: Let λ be the global security param-
eter, e.g. usually 128 for AES-128, then we observe that la ∈ Zλ/ log2 Pk+1

m , where the one
additional entry stems from generalizing the point-and-permute technique for arithmetic
circuits, i.e. using a color digit in ZPk

instead of a binary color digit for labeling. This
results in logarithmic asymptotic label size expansion.

The additive operator ⊕ over Z2 is analogous to + over arbitrary residue rings in Z, al-
lowing us to follow the Free-XOR construction by Kolesnikov et al. [KS08]: Free addition
is enabled by choosing

la = l0 + aRPk
(2.12)
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where the circuit-wide constant RPk
is now an element of ZPk

, analogous to R ∈ Z2 in
binary circuits, as this simplifies addition to:

lax + lby mod Pk = (l0x + l0y) + (a+ b)RPk
mod Pk (2.13)

Ball et al. showed that this construction allows for free multiplication by a constant as
well [BCM+19]:

c · la mod Pk = c · l0x + c · aRPk
mod Pk (2.14)

Unfortunately, other functions are not free but must be constructed using the approach
outlined earlier in Section 2.3.1, i.e. one must encrypt function results in a truth table using
input labels as encryption keys. For any arbitrary unary function ϕ : Zm 7→ Zn we can
construct a modular projection gate that garbles the result for each possible garbled input
value la : a ∈ Zm using Encla(lϕ(a)) to create the garbled output. Here we can see why
Sander et al. chose to utilize Ball et al.’s approach of leveraging residue representations to
express a, as otherwise the truth table becomes unpractical in size for larger m.

Several non-linear components of NNs can be built from the sign function. For example,
activation layers commonly utilize ReLU(x) = x · sign(x). Luckily, the garbled sign func-
tion can be approximated efficiently in a manner first described by Ball et al. [BCM+19]:
We first look at the standard procedure on how to map an integer in residue representation
([x]1, ..., [x]k) back to Z (cf. Section 2.2):

x =
k∑

i=1

αi · [x]i mod Pk. (2.15)

It follows that some factor q ∈ Z must exist, such that

x = qPk +
k∑

i=1

αi[x]i ⇐⇒
x

Pk
= q +

∑k
i=1 αi[x]i
Pk

. (2.16)

As q ∈ Z and Pk ∈ N, the fractional part of x
Pk

and
∑k

i=1 αi[x]i
Pk

must be equal. Since x was
derived from a residue representation that is upper-bounded by Pk, x < Pk and therefore
q = 0. Let us now set an equivalent definition of the sign operation used in DASH (as will
be detailed later in Section 3.2) for the case that we are working on discretized floating
point numbers in ZPk

:

sign(x) :=

1, if x ≥ Pk
2 ⇐⇒ if x

Pk
≥ 1

2 ,

0, otherwise.
(2.17)
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From the above we conclude:

x

Pk
≥ 1

2
⇐⇒ fractional part of

∑k
i=1 αi[x]i
Pk

≥ 1

2
(2.18)

We can now calculate sign by computing αi[x]i/Pk for all residues. It is possible approxi-
mate the result for performance reasons. This approximation relies on choice of discretiza-
tion level M and radices m1, ..mt (s.t.

∏t
i=1mi = M ) to construct mixed-radix approxima-

tions of the input residue components of x. Consequently we do not compare with 1
2 but

with M
2 when evaluating Equation 2.18. We use this mixed-radix approximation, as it al-

lows for an arithmetic generalization of the Free-XOR technique mentioned earlier [KS08]
as presented by Malkin et al. [MPS15], i.e. free integer addition. Furthermore, for large
M , it is significantly more runtime and memory efficient to represent that integer value
using a computationally attained mix of larger radices [BCM+19] This follows a similar
motivation as to why we use residue representations for GC labels. So in conclusion, we
perform three steps:

I: Compute αi[x]i/Pk for all i ≤ k.

II: Compute the sum of all αi[x]i/Pk.

III: Compare the result to M
2 .

These individual steps will be important later when comparing our scaling solution to
Sander et al.’s [SBBE23b] in terms of ciphertexts required per garbled computation in
Chapter 6.
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3 Secure Neural Network Inference in DASH

In this thesis we work on improving the DASH framework, an already existing solution
to secure machine learning inference provided by Sander et al. in 2023 [SBBE23b]. Before
outlining our approach, we must therefore give an overview of the current state of DASH.

3.1 Overview

Similar to previous solutions (cf. Section 1.2), DASH offers secure NN inference by utiliz-
ing arithmetic GCs. However, certain distinctive features of DASH enable it to outperform
such previous solutions both in terms of quantitative performance measures and feature
set richness. Among them, most central are:

1. Arithmetic Garbled Circuits. As described earlier in Section 2.3.3, abstractions to Fre-
eXOR in binary GCs can be made, enabling efficient garbling of circuits composed of
arithmetic gates. DASH utilizes such advancements, operating on arithmetic circuits
which evaluate large integers in residue representation.

2. CUDA / GPU support. DASH supports efficient CPU- and GPU-based parallelization
during circuit evaluation. When looking at the prevelance of massive parallelization
in non-secure machine learning today, it is logical to pursue this development in
secure machine learning as well.

3. Single Round of Communication. While other solutions struggle with infeasible run-
times due to large communication overheads for increasingly deep NN models,
DASH can handle such models easily due to only needing one round of commu-
nication per inference regardless of model depth.

4. ONNX-based interoperability. DASH supports the widely used ONNX format to im-
port pre-trained NN models. This allows for greater interoperability with already
existing (non-secure) solutions.

5. TEE support. DASH utilizes Trusted Execution Environments (TEE), enabling a two-
level hierarchy of security properties between non-critical operations that can be
offloaded to non-secure hardware and critical garbling operations that are securely
executed within a TEE. This allows DASH to achieve security against the malicious
attacker model without expanding the (arithmetic) GC protocol.

19
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6. Rescaling of inputs Furthermore, DASH allows to deploy a scaling operation during
quantization of floating-point inputs to integers (in CRT representation), which we
will now discuss in detail.

3.2 Garbled Scaling by Two

While formally operating over (tensors of) R as outlined in Section 2.1.1, most NN im-
plementations use floating-point representations during training and inference. As arith-
metic GCs operate on integer rings, DASH opts for a different choice: All model informa-
tion as well as the actual inference input are quantized to ZPk

either by the means of simple
rounding (after multiplying by a small circuit-wide quantization constant α, i.e. perform-
ing round(x · α)) or, more interestingly, by the means of first scaling and then rounding
during quantization. The first approach is denoted as SimpleQuant, while second one is
denoted as ScaleQuant by DASH’s authors [SBBE23a].
The latter option allows for garbled inference on significantly larger NN models: Via
downsampling of hidden layer feature vectors, inputs quantized to larger integer ring do-
mains can be processed in a garbled manner, while the accuracy tradeoff remains negli-
gable. This allows for overall better garbled inference results, as more complex network
topologies outweigh this accuracy loss in practice.
Implementing a garbled scaling operation is non-trivial, as our arithmetic generalization
of binary GCs operate on CRT representations, for which general division is impractical.
DASH currently supports scaling by scaling factor s = 2, i.e. transforms residue represen-
tations of x ∈ Z to y := ⌊xs ⌋ for s = 2.
Let ([y]1, .., [y]k) be the residue representation of y, analogously to x. In order to map
from both positive and negative integers to the residue representation’s value range ZPk

,
the actual scaling step is preceded by a shift up operation and succeeded by a shift down
operation as depicted in Figure 3.1.
During scaling, Sander et al. utilize a per-residue computation proposed by Jullien [Jul78]
to determine [y]2, .., [y]k:

[y]i = ([x]i − ([x]i mod 2)) · 2−1 mod pi. (3.1)

The remaining component [y]1 can then be deduced as follows:

[y]1 = sign(x′) :=

0, if x′ is negative in integer representation,

1, otherwise.
, (3.2)

where x′ = (0, [y]2, .., [y]k) in residue representation. This final step is called base exten-
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sion (BE), because we extend the CRT base of the RNS from (3, .., pk) to (2, 3, .., pk). The
resulting circuit is visualized in Figure 3.2.
Note that this sign-based BE cannot be generalized for s > 2. This poses a problem as
scaling by higher scaling factors must therefore be constructed by repeated application of
s = 2 scaling layers in DASH, i.e. scaled quantization is limited to

ScaleQuant(x, l) = round(x · 2−l), (3.3)

where l is the number of scaling layer repetitions. In DASH’s current state, their limita-
tions result in scaling layers presenting a runtime performance bottleneck, especially for
more complex NN topologies. Furthermore, this limits the overall scaling factor to be a
power of two.
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Figure 3.1: DASH’s scaling of integers in residue representation for Pk = 30 and s = 2.
Image taken from [SBBE23a].

Scaling Base Extension

Figure 3.2: Arithmetic circuit used for scaled quantization with s = 2 in DASH. Image
taken from [SBBE23a].
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3.3 Security Discussion

Sander et al. [SBBE23a] define three central security goals for DASH:

1. Input Privacy. The input shall be inaccessible to all MPC parties except for the re-
spective input provider, even against malicious and co-operating adversaries. This
property follows from what Sandel et al. call the garbling assumption and device as-
sumption: The former states that the evaluation of garbled protocols is passively
secure. This assumption is reasonable, they argue, as it is based on well-established
cryptographic assumptions. The latter states that within DASH’s TEEs, i.e. during
garbling, computation is secure.

2. Integrity of the Inference. It must be ensured that the garbled NN accurately simulates
the underlying NN model and computes the correct result of the inference. This
property directly follows from the GC protocol.

3. Output Privacy. The output of the NN inference must hold to the same security
standards as the initial input. Following the garbling assumption and the device
assumption, this property is assured as well.

As discussed earlier when defining secure machine learning, DASH does not guarantee
model privacy. The authors argue that this security goal is generally hard to reach due
to existing model extraction attacks on NNs. Furthermore, it is important to note that
because DASH does not support techniques such as the cut-and-choose protocol [LP12],
input privacy under the malicious attacker model is only achieved when deploying TEEs,
which we do not support for our two contributions. This is why for our purposes, DASH
provides security against the semi-honest model, as is the standard for the (arithmetic) GC
protocol. The difference between these two adverserial models is that during computation
the malicious (or active) adversary may deviate from the protocol, while in a semi-honest
(or honest-but-curious) setting, the adversary tries to learn additional information while
following the protocol.
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A per-layer runtime comparison for DASH conducted by Sander et al. [SBBE23a] yielded
the insight that in deeper NN topologies, the scaling operation introduced earlier cur-
rently presents a runtime performance bottleneck. Our hypothesis is that this is caused by
the current limitation of s = 2 and that a general solution for arbirary s would be more ef-
ficient compared to the current solution of stacking scaling layers with scaling parameter
s = 2. This generalization is, however, non-trivial as we need to find a way to generalize
the BE to residues with modulus greater than two. This will be our approach to the first
research question proposed earlier in Chapter 1.

By applying Szabo and Tanaka’s 1967 BE algorithm [ST67] to Sander et al.’s arithmetic GC-
based secure machine learning solution DASH [SBBE23a], we generalize DASH’s scaling-
by-two approach to enable scaling by an arbitrary prime factor.

As pointed out in Chapter 3, Sander et al. leveraged Jullien’s approach to residue number
scaling [Jul78], which we introduced earlier for the special case of scaling by p0 = 2 in
Equation 3.1. For clarity, let s =: pe ∈ {2, 3, ..pk} denote our prime scaling factor and [x]e

the respective residue. Then, we can generalize Sander et al.’s approach to

[y]i = ([x]i − ([x]e mod pi)) · p−1
e mod pi. (4.1)

By conducting this generalization, we also generalize the problem of BE: While the for-
mer approach found in Equation 3.1 allows us to scale x in residue representation for all
residues except [x]1, i.e., except for the residue corresponding to the prime factor p1 = 2,
we now can only scale x in residue representation for ∀[x]i : i ̸= e.

Therefore, we will first describe how to tackle this generalized problem in Section 4.1 and
then apply our approach to arithmetic GCs in DASH in Section 5.2.1. Finally, we describe
how to deploy this new BE implementation in a novel garbled scaling layer which scales
by pe in Section 5.2.2.

Note that this generalization also allows us to scale by the product of multiple prime
moduli s = pe1 · pe2 · ... within one scaling layer. In this case, one scaling operation is
followed by multiple generalized BE operations, i.e., by extending the output’s base first
by pe1 , then by pe2 , and so on. This possibility is discussed further in Section 5.2.2 as well.
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4.1 The Base Extension Algorithm

In order to improve the readability of the following algorithms, let [x]−1
m denote x−1

mod pm. Furthermore, we make RNS to integer conversion less explicit and more read-
able: x = ([x]1, .., [x]k) shall be equivalent to x←→ ([x]1, .., [x]k).
For the implementation of modular scaling, we deployed an algorithm to perform BE
proposed by Szabo and Tanaka in 1967 [ST67] that combines

1. modular division with remainder zero and

2. mixed-radix systems (MRS) (cf. Section 2.2.3).

As noted earlier, general division in RNS is a hard task. However, we will give a construc-
tion for the special case of division with remainder zero, i.e., division where the dividend
x is an integer multiple of the divisor y. We assumed the division can not be simplified,
i.e., x and y are coprime. For such x, y we can construct(

x

y
mod Pk

)
· (y mod Pk) = x mod Pk. (4.2)

From Equation 2.9 we know that this is equivalent (←→) to the following in residue rep-
resentation: (

[x]i
[y]i

mod pi

)k

i=1

· ([y]i mod pi)
k
i=1 = ([x]i mod pi)

k
i=1. (4.3)

Since the multiplicative inverse of each [y]i is unique, it follows from Equation 4.3 that

[x]i
[y]i

mod pi = [y]−1
i [x]i mod pi, (4.4)

and therefore as a result for all RNS divisions with remainder zero

x

y
mod Pk = ([y]−1

i [x]i mod pi)
k
i=1. (4.5)

This result implies free division with remainder zero in our arithmetic GC setting: During
scaling, we only divide by (plaintext) RNS moduli pi, making the generally hard task of
finding a modular inverse cryptographically free. Hence, the computation is equivalent
to performing one (free) multiplication by a constant.
Given i = 1, ..., k, let B = (pi)i ̸=e be our RNS base before BE and BE = (pi)i be our RNS
base after BE. The general approach for an arbitrary prime BE given by Szabo and Tanaka
[ST67] is to generate an MRS representation for x that is associated with our extended
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RNS base BE in order to find ae and subsequently [x]e. Note that when performing the
BE, values of all [x]i for i ̸= e are known.

We treat [x]e as a variable and generate an associated MRS derived directly from Equation
2.11. This method finds a linear expression for ae relative to our variable [x]e. If we assume
ae to be the most significant digit in the MRS associated with BE , i.e., assume e = k, we
know that ae = 0: Since x is within the CRT domain of the un-extended CRT base B, x can
be put to mixed radix form using only the moduli of B as radices, implying ae = 0. Since
now (with the elimination of ae as a variable) the aforementioned linear expression only
contains one unknown variable, namely [x]e, we can easily find a solution for [x]e. This,
however, limits our choice of e to e = k and therefore s to s = pk, which poses no problem
as it merely demands re-ordering our extended CRT base BE before and after BE, which
will be discussed later in Section 5.2.1.

We will now illustrate this algorithm with an example. First, we provide an abstract de-
scription and a numerical example of Szabo and Tanaka’s MRS generation algorithm. This
first step is crucial as it offers a practical understanding of our algorithmic starting point.
Then, in a second numerical example, we perform a BE to illustrate the procedure. A
pseudocode implementation of the entire BE algorithm is then provided in Algorithm 1.

Example: MRS Generation

Let B = (8, 5, 7, 3) be our choice of a coprime RNS base. We aim to find the associated
MRS coefficients a1, ..a4 for a given residue representation x = (3, 4, 2, 1). Note that the
motivation behind generating this MRS is purely that the BE algorithm described after-
ward builds upon its general procedure: We are not interested in the resulting MRS itself.
Recall Section 2.2.3 for notational details.

Generating an associated MRS representation consists of the iterative subtraction of ai,
followed by a remainder-zero division by pi. Since x− ai is divisible by pi by construction
(ai is the leftover residue when performing x

pi
), this division is equivalent to residue-wise

multiplication by pi’s modular inverse (cf. Equation 4.1). This process was introduced
earlier in the recursive formula presented in Equation 2.11.

Getting back to our example, we know from Equation 2.11 that a1 = [x]1 = 3, so we begin
by subtracting a1 from x, both in CRT representation:

x− a1 = (3, 4, 2, 1)− (3, 3, 3, 0) = (0, 1, 6, 1). (4.6)

In order to determine a2, we then continue to multiply by the modular inverse of p1 = 8
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(respective a2’s modulus p2 = 5) to construct the expression found in Equation 2.11:

a2 = [(x− a1) · p−1
1 ]p2

= [(0, 1, 6, 1) · (0, 2, 1, 2)]5
= [(0, 2, 6, 2)]5

= 2.

(4.7)

From now on, we iteratively repeat this process: First, a subtraction from our intermediary
result:

(0, 2, 6, 2)− a2 = (0, 2, 6, 2)− (2, 2, 2, 2) = (0, 0, 4, 0). (4.8)

Followed by a multiplication by a modular inverse:

a3 = [((0, 2, 6, 2)− a2) · p−1
2 ]p3

= [(0, 0, 4, 0) · (0, 0, 3, 2)]7
= [(0, 0, 5, 0)]7

= 5.

(4.9)

Only a4 is now left to be determined. We repeat the procedure once more:

(0, 0, 5, 0)− a3 = (0, 0, 5, 0)− (5, 0, 5, 2) = (0, 0, 0, 1), (4.10)

a4 = [((0, 0, 5, 0)− a3) · p−1
3 ]p4

= [(0, 0, 0, 1) · (0, 0, 0, 1)]3
= [(0, 0, 0, 1)]3

= 1.

(4.11)

The algorithm terminates and we know: The coefficients of x in the associated MRS of
our RNS are (a1, a2, a3, a4) = (3, 2, 5, 1). Notice that during the computation of any ai, we
never use the information of [x]j for any j < i, i.e., less significant RNS components of
modular index j do not affect the computational outcome for more significant indices i.
From now on, we will consequently not compute such [x]j , as seen in line 5 of our BE’s
algorithmic description found later in Algorithm 1.
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Example: Base Extension

But first, let us expand the example above to Szabo and Tanaka’s BE algorithm and illus-
trate it with another example. Here, we’re working with a smaller B = (2, 3, 5), adding 7

as an extra modulus. Choosing the same x as before, we now have (1, 1, 3) as its residue
representation in this 3-modulus CRT base. We perform a BE adding 7 as a modulus, i.e.,
BE := (2, 3, 5, 7). In the extended base, x = (1, 1, 3, [x]7). We begin by executing the algo-
rithm for generating the associated MRS coefficients (a1, a2, a3, a4) as we just described in
Eqs. 4.6 to 4.10. This results in a1 = 1, a2 = 0, a3 = 2 and, most importantly,

a4 = [2−13−15−1[x]7 + 4]7 = [30−1[x]7 + 4]7 = [2−1[x]7 + 4]7. (4.12)

Because x was within the domain of the original CRT base B, that is, within the interval
[0, (2 · 3 · 5) − 1] = [0, 29], we know that it can be expressed as a mixed-radix number
(a1, a2, a3) in B’s associated three-digit MRS. This implies that in the four-digit MRS asso-
ciated with BE , a4 = 0. This allows us to find [x]7:

a4 =[2−1[x]7 + 4]7 = 0

⇐⇒ [x]7 + [8]7 = 0

⇐⇒ [x]7 = [−8]7 = 6

(4.13)

Finding the residue for our newly added modulus p4 = 7 concludes Szabo and Tanaka’s
algorithm, which is, as they put it, essentially an "MRS conversion with an additional step"
[ST67].
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4.2 Non-Garbled Base Extension Pseudocode

Before implementing a garbled version of this algorithm in DASH, we designed a non-
garbled version aiming to reduce expressions that are expensive to garble in arithmetic
GCs, i.e., reduce the number of projection gates. An in-depth analysis of projection gate
count and a comparison to the current state-of-the-art implementation in DASH can be
found later in Chapter 6. The non-garbled algorithm is presented in Algorithm 1.

Algorithm 1 Algorithmic description of the non-garbled prototype implementation of Sz-
abo and Tanaka’s BE algorithm. x = (x1, .., xk) is the operation’s input tensor. The algo-
rithm returns the BE result in xe and assumes s = pk, i.e., that the last residue must be
base-extended. The resulting re-ordering of BE may imply that pk is not its largest prime,
which is we must introduce pmax := max(BE).

1: procedure BASE EXTENSION

2: w ← x
3: ext← 0
4: for i← 0 to k − 1 do
5: for j ← 0 to k − i− 1 do
6: if i = 0 then
7: [w]i+j+1 ← [w]i+j+1 − ([x]0 mod pi+j+1)
8: else
9: [w]i+j+1 ← [w]i+j+1 − (ext mod pi+j+1)

10: end if
11: [w]i+j+1 ← [w]i+j+1 ·

((∏
pl∈BE :l>i p

−1
i mod pl

)
mod pi+j+1

)
12: end for
13: ext = [w]i+1 mod pmax

14: end for

15: return −ext mod pe ·
((∏

p∈B[p]
−1 mod pe

)−1
mod pe

)
16: end procedure

This algorithm performs the iterative approach for determining MRS coefficients we
just introduced: The central loop of Algorithm 1 finds an expression for the coefficient
corresponding to our additional modulus, followed by the two operations performed
on [4]7 in our BE example: The expression is multiplied by the (modular) inverse of(∏

p∈B[p]
−1 mod pe

)
(Equation 4.13, Line 2) and then multiplied by −1 (Equation 4.13,

Line 3).
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5 Implementation

Now that we have introduced the theoretical ideas behind our garbled modulus-based
BE approach, we can go over to discuss implementation details of our solutions to both
research questions presented in Chapter 1.

We propose a garbled max-pooling implementation for DASH to tackle the second re-
search question. Pooling layers find widespread application in real-world NN topologies
and are currently unsupported by DASH. Instead, DASH models are restricted to increas-
ing stride parameters in convolutional layers to achieve downsampling, possibly imply-
ing a loss in accuracy or runtime performance.

As some implementation details are best understood by first describing our design of
garbled max-pooling layers and then going over the more extensive subject of our scaling
generalization, we will discuss our approach to the second research question and then
cover the first.

5.1 Garbled Max-Pooling Layer Implementation

We will now describe in detail our approach, which was given a brief overview above,
starting with the addition of a max-pooling operation for DASH. Discussing this topic
first offers the opportunity to delve into the intricacies of layer implementation in DASH,
which will form a basis for our other endeavors as well. Therefore, we will now showcase
the implementation process of additional layers in DASH from a general perspective in
Section 5.1.1, and then further explore newly added software components required for
this specific layer in Section 5.1.2. We then conclude this Section on garbled max-pooling
by detailing input size limitations in relation to the choice of CRT base in Section 5.1.3 and
covering concurrent execution in Section 5.1.4.

Layer Design in DASH

Designing layers in DASH is based on drawing parallels between garbled- and non-
garbled versions of components: Implementations of the Layer class interface serve as
non-garbled versions of NN layers. These non-garbled layers are managed by the single-
ton Circuit class, essentially representing a non-garbled NN. This singleton Circuit is then
used during initialization of the (also singleton) GarbledCircuit class, representing a gar-
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bled NN: For each Layer, find the corresponding implementation of the GarbledLayer class
interface, then add it to the GarbledCircuit.
Knowing this, we can construct an exemplary garbled NN containing a single garbled
max-pooling layer showcasing the end-user convenience of this approach:

Listing 5.1: Garbled NN in DASH containing a garbled max-pooling layer. The pool-
ing layer expects input size 16 × 16, channel count C = 3, and kernel size
KX ,KY = 2. MRS base for approximated garbled sign was chosen as pro-
posed by Ball et al. [BCM+19] for CRT base size k = 3.

1 const vector<crt_val_t> crt_base{2, 3, 5};

2 const vector<mrs_val_t> mrs_base{26, 6, 3, 2};

3

4 auto circuit = new Circuit{new MaxPool2d(16, 16, 3, 2, 2)};

5 auto gc = new GarbledCircuit(circuit, crt_base, mrs_base);

Given some 16×16×3 input data, we can now proceed with the GC protocol. As outlined
in Section 2.3, the two parties following the protocol now

1. garble the input data, then

2. evaluate the GC, and finally

3. decode the garbled output data.

These two parties can either communicate via OT or be (as is the case for this simple
example) on the same host machine, referred to as the one-server setting. This translates to
the contents of Listing 5.2:

Listing 5.2: Garbling of input data, evaluation, and decoding of garbled output of the GC
constructed in Listing 5.1.

1 // 1. Garbler garbles inputs:

2 const auto g_inputs{gc->garble_inputs(inputs)};

3 // 2. Evaluator evaluates the GC:

4 const auto g_outputs{gc->cpu_evaluate(g_inputs)};

5 // 3. Either party decodes the garbled output:

6 const auto outputs{gc->decode_outputs(g_outputs)};

This same separation of garbling and then evaluating can be found internally in individual
layers as well. The GarbledLayer interface requires the implementation of a member func-
tion for both garbling and evaluation. While the former is used to describe the arithmetic
circuit components to be garbled, the second describes how these garbled components
shall be evaluated during circuit evaluation. These two are algorithmically very similar.
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5.1 Garbled Max-Pooling Layer Implementation

Algorithm 2 Algorithmic description of the Garble function found in garbled max-pooling:
current_max and comp are local auxiliary variables, output_width, output_height, C, KX and
KY are global constants, max_gadgets is a class member, and x is the operation’s (three-
dimensional) input label tensor. For better readability, this procedure abstracts from inter-
nal CRT style label representations.

1: procedure GARBLEDMAXPOOLD2D::GARBLE()
2: for i← 0 to output_width do
3: for j ← 0 to output_height do
4: for k ← 0 to C do
5: current_max← x(i, j, k)
6: for l← 0 to KX do
7: for m← 0 to KY do
8: comp← x(i+ l, j +m, k)
9: Append new MaxGadget to max_gadgets.

10: current_max← max_gadgets.back().Garble(current_max, comp)
11: end for
12: end for
13: Copy current_max to pre-allocated output label at index i, j, k.
14: end for
15: end for
16: end for
17: end procedure

Let us, therefore, first discuss the Garble function in detail and then showcase what differ-
entiates it from Evaluate.

As seen in Algorithm 2, the approach can be broken down to a singular iteration over all
output labels, for each of which a local two-dimensional kernel in each input channel is
traversed. We then utilize a MaxGadget, allowing garbled computation of the maximum
of two garbled (single-element) input labels. What precisely a gadget is in this context and
how the MaxGadget operates will be discussed in detail in Section 5.1.2.

Now, how does the garbled pooling implementation differ during evaluation round? Our
modular gadget-based design allows us to isolate large parts of the protocol’s crypto-
graphic details and not show up in layer implementations. The difference between gar-
bling and evaluation therefore lies in how we interface with elements of max_gadgets:
During evaluation (i.e. when calling GarbledMaxPool2d::Evaluate), we do not allocate new
gadget instances, but rather reference the ones previously created during garbling (cf.
Algorithm 2, Line 9) by passing comp and cur_max to MaxGadget::Evaluate where MaxGad-
get::Garble was called during garbling (Algorithm 2, Line 10).

When later discussing the inner workings of the MaxGadget in Section 5.1.2, a similar pat-
tern will emerge: By combining DASH’s various gadgets with some basic arithmetic op-
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erations implemented as garbled gates, operations such as Max or ReLU can be modeled
similarly to how max-pooling layers were brought to DASH.

Auxiliary Gadgets

Gadgets fill a design gap between garbled network layers and garbled gates. While the
former implements modular end-to-end garbled neuron transformation functionality, the
latter implements single-input garbled operations. We thus require a third category of
gadgets that operate on batches of labels while not being restricted to the end-user interface
garbled layers provide. The first such gadget in DASH was the SignGadget provided by
Sander et al. [SBBE23b], implementing the sign operation defined earlier in Equation 3.2.

For our max-pooling implementation discussed in Section 5.1.1, the max operation is cru-
cial. Therefore, we first implemented a ReLUGadget and built a MaxGadget from there. To
do so, we utilized the following equation provided by Ball et al. [BCM+19]:

max(x, y) = x+ReLU(y − x) (5.1)

where ReLU(x) = x · sign(x) (cf. Section 2.3.3). This allows us to reduce the max op-
eration to computing ReLU, while computing ReLU can be reduced to applying Sander
et al.’s SignGadget. Algorithmically, we arrive at Algorithms 3 and 4 defining the Gar-
ble functionality of our new ReLUGadget and MaxGadget respectively. The corresponding
Evaluate functions are not given in detail here, as their marginal difference follows the
same pattern mentioned earlier for the difference between GarbledMaxPooling2d::Garble
and GarbledMaxPooling2d::Evaluate in Section 5.1.1.

Algorithm 3 Algorithmic description of the Garble function of DASH’s ReLUGadget.
Again, x is the input label tensor; out_sign and out_mult are auxiliary label tensors of
equivalent dimensionality as the input. The singular SignGadget is assigned to sign_gadget
before execution, and the |x| MixedModulusHalfGates are assigned to mm_hgs during exe-
cution.

1: procedure RELUGADGET::GARBLE

2: out_sign← sign_gadget.Garble(x)
3: for i← 0 to |x| do
4: Append new MixedModHalfGate to mm_hgs
5: out_mult[i]← mm_hgs.back().Garble(x[i], output_sign[i])
6: Copy out_mult[i] to pre-allocated output label at index i.
7: end for
8: end procedure
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Algorithm 4 Algorithmic description of the Garble function of DASH’s MaxGadget. This
time, we have two single-entry input label tensors x(1) and x(2) (corresponding to x and y
in Equation 5.1). The ReluGadget is assigned to relu_gadget before execution. Addition (+)
and subtraction (−) implies DASH’s implementation of free garbled addition (cf. Equation
2.12).

1: procedure MAXGADGET::GARBLE

2: out_subtraction← x(2) − x(1)

3: out_relu← relu_gadget.Garble(out_subtraction)
4: out_addition← x(1) + out_relu
5: Copy out_addition to pre-allocated output label of size 1.
6: end procedure

Correct Choice of CRT Base

Since we utilize modular congruence classes over ZPk
to model our garbled values, the

collision-free domain is limited by the choice of Pk. The first obvious limitation is, as
reasoned in Section 2.2, that all compared values must be within the boundaries of our
RNS, i.e., ⌊

−Pk

2

⌋
≤ x, y ≤

⌊
Pk

2
− 1

⌋
. (5.2)

It does not suffice, however, to simply look at the domain limits of the discretized NN
input vectors x, y, as in some cases, preliminary results during layer evaluation may be
larger in size than the input or the computation’s result. Note that this is the case for our
garbled pooling implementation: In Equation 5.1 we conduct a per-residue subtraction of
two input values. This means that in order for this preliminary result to not cause modular
collision, we require not only the above but furthermore that⌊

−Pk

2

⌋
≤ x− y ≤

⌊
Pk

2
− 1

⌋
. (5.3)

As x, y can hold arbitrary residue values within their residual bounds, Eqs. 5.2 and 5.3
imply ⌊

−Pk

4

⌋
≤ x, y ≤

⌊
Pk

4
− 1

⌋
. (5.4)

The same argument applies to the addition in Equation 5.1, leading to the same conclusion
of choosing our CRT base according to the upper and lower bounds presented in Equation
5.4.
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Parallel Evaluation

Our implementation supports parallel execution during evaluation. We deployed a depth-
three OpenMP [DM98] parallelization instruction over the pooling layer’s central for loop
(cf. i, j, k in Algorithm 2). As individual pooling kernels do not interfere with one another,
this reproduces single-thread execution results consistently. We chose this approach over
parallelizing within kernel evaluation (i.e., over l, k in Algorithm 2) as our gadget-based
solution would make eliminating race conditions between concurrent max evaluations
challenging.

5.2 Garbled Scaling by Arbitrary Scaling Factors

Building upon the above implementation details of DASH and the theoretic groundwork
of Chapter 4, we are ready to describe our solution to the first research question.

Garbled Base Extension

As mentioned earlier, we aim to minimize the amount of projection gates used in our im-
plementations. Projection gates are required for all operations that are not cryptograph-
ically free, that is, all operations except modular additions (which include modular sub-
traction) and multiplications by a constant.
Fortunately, Szabo and Tanaka’s BE algorithm largely relies upon these two free opera-
tions. The only problem induced by their iterative approach is that it requires several
modular base change projection operations computing

x mod pi 7→ (x mod pi) mod pj (5.5)

for some i, j ≤ k. As each label in an arithmetic GC corresponds to one CRT modulus,
the central loop of Szabo and Tanaka’s approach necessarily implies the usage of mod-
ular base change projections: In each iteration, an intermediate result in the calculation
of ext is derived from a CRT component of w, namely wi+1 (Algorithm 1, Line 13). In
order to prevent information loss in this process, ext must be a residue of equivalent or
larger modulus than each component of w. To still minimize the number of ciphertexts re-
quired during projections, we chose the modulus of ext to be max(BE), i.e., the maximum
modulus of all elements of w.
In addition to projections required when writing intermediate results to ext, we must also
perform projections when writing from that label to labels of differing moduli:

1. During the i-th iteration of Szabo and Tanaka’s BE algorithm, all CRT entries of w
with an index larger than i are updated (cf. Algorithm 1, Lines 7 and 9). Here, the
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5.2 Garbled Scaling by Arbitrary Scaling Factors

current value of ext is subtracted from labels of varying moduli, making modular
base change operations on ext necessary.

2. After performing the algorithm’s final arithmetic operations (cf. Equation 4.13), the
final result must be projected to be of modulus pe, i.e., the modulus for which we
perform the BE.

While the underlying SignGadget developed by Sander et al. [SBBE23b] deploys projection
gates to perform non-free garbled computations (cf. comparison of ciphertext counts later
in Chapter 6), our previously discussed implementation of garbled max-pooling did not
require the manual management of such gates. All computation was based on a SIMD
approach combining various gadgets, which differs from this more complex contribution
of garbled BE: All projection gates are allocated, garbled, and evaluated per input.
Similarly to the parallelization of our first contribution, we parallelized the online phase
(i.e., circuit evaluation) of our garbled BE implementation via OpenMP [DM98]. While
the iterative steps in Szabo and Tanaka’s approach build upon the previous steps and can
thus not be computed concurrently, concurrency over the input domain poses no problem.
A runtime analysis of this approach can be found later in Chapter 6.
The entire BE computation is wrapped in a new gadget for DASH, the BaseExtensionGad-
get. During the instantiation of this gadget, three pre-computations are performed before
the gadget is garbled or evaluated:

1. At the end of each algorithmic iteration, the intermediate result of ext is multiplied
by the product of several modular inverses of CRT base entries (cf. Algorithm 1,
Line 1). As all CRT entries are public and not stored in garbled labels but in cleartext
(which is why multiplying ext with this product of modular inverses is cryptograph-
ically free in the first place), the pre-computation of these products can be conducted
before entering the garbling phase.

2. Analogously, the aforementioned
∏

p∈B[p]
−1 mod pe, i.e., the product of inverses of

the total CRT base, utilized in the final step of Szabo and Tanaka’s algorithm (cf.
Equation 4.13), is pre-computed during instantiation.

3. The order of CRT moduli in BE is reversed. This is done to integrate the algorithm’s
requirement of the extra modulus to be at the very end of BE . At the same time,
DASH’s scaling operation always assumes the first entry of BE to be the scaling
factor s and therefore to be the extra modulus pe, requiring a reversal.

The BaseExtensionGadget is deployed during rescaling where Sander et al. [SBBE23b] pre-
viously deployed their SignGadget. This allows for garbled scaling by an arbitrary (prime)
scaling factor s = pe, which we will now discuss in further detail.
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Integration in DASH’s RescaleLayer

As outlined earlier in Chapter 3, DASH currently supports scaling by s = 2. A dedicated
RescaleLayer performs this operation by first shifting up the signed integer representations
of quantized neuron inputs x of value range

[
−Pk

2 , Pk
2

]
to the corresponding unsigned

value range [0, Pk]. This is achieved via constant addition of Pk
2 . After then applying the

scaling operation (cf. Equation 3.1) including Sander et al.’s sign-based BE, the result is
shifted down back to a new signed domain: Because we scaled down by the factor s = 2,
we cannot simply subtract the previously added Pk

2 , but must subtract Pk
2s = Pk

4 instead.
Again, cf. Figure 3.1 for a visual depiction of this procedure.
Due to the modular design of our BaseExtensionGadget, the procedure can easily be gener-
alized as follows for any s ∈ 2, .., pk by deploying our new modulus-based BE instead:

1. Shift up x by Pk
2 .

2. Let [x]e be the residue corresponding to modulus s in the CRT representation of x.
For all residue components [x]i ̸= [x]e, perform Equation 4.1.

3. Apply the new BaseExtensionGadget in order to determine the extra modulus [x]e.

4. Shift down by Pk
2s

By utilizing the generalized scaling formula found in Equation 4.1 proposed by Jullien
[Jul78], replacing Sander et al.’s SignGadget with our new BaseExtensionGadget and adjust-
ing the shifting down factor according to s, garbled scaling by an arbitrary prime factor
finally becomes possible.
While not yet implemented in our solution, scaling by a product of several prime factors is
also supported by this design: Let s = pe1 ·pe2 · ... be our scaling factor. Then the following
slight variation of the above would scale x by s:

1. Shift up x by Pk
2 .

2. For each [x]i with corresponding to modulus pi that is not a factor in s = ps1 · ps2 · ...,
perform Equation 4.1.

3. Apply a separate BaseExtensionGadget for each s1, s2, ... in order to determine the
extra moduli.

4. Shift down by Pk
2s

This result enables scaling not just by arbitrary prime scaling factors, but by any s ≤ Pk.
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In this chapter, we will analyze our approach. We will first conduct an experimental eval-
uation of our novel BE implementation based on Szabo and Tanaka’s MRS-based solution
[ST67]. We will not investigate the accuracy of this implementation, as Szabo and Tanaka’s
algorithm does not approximate and hence does not affect this metric. This experimental
analysis is then followed by an analysis of ciphertext counts required when garbling in
our solution, comparing it to Sander et al.’s sign-based approach.

6.1 Experiments

This section will evaluate the runtime performance of our novel modulus-based BE im-
plementation. It will be challenged by the current state-of-the-art provided by Sander et
al. and their sign-based BE implementation for DASH. All measurements were conducted
in the one-server setting on a single Intel Xeon Gold 5415+ CPU with base clock speed
of 2.90 GHz. As our new implementation does not currently support CUDA, we did not
perform any experiments on GPUs.
We used P8 (i.e., k = 8) as the CRT representations’ primal modulus for all benchmarks.
All input data consists of randomly generated integer values sampled from a uniform
integer distribution of range [0, 255]. We used the Mersenne Twister algorithm mt19937
[MN98] as our pseudo-random number generation engine. Each measurement was re-
peated ten times.
We only measure circuit evaluation time, i.e., the online phase of the GC protocol. This
metric is the primary (runtime) performance metric pursued in DASH’s design, as the
circuit’s usually more expensive garbling happens prior to any communication and can
be seen as a pre-computation in a secure machine learning as a service setting.
Since Sander et al.’s [SBBE23a] BE implementation is restricted to s = 2, it was logical to
compare how our implementation fares in that scenario first. This is the best-case scenario
for their implementation, as higher scaling factors would have to be translated to multi-
ple successive RescaleLayer evaluations, which we will cover in the following experiment.
Even in the s = 2 scenario, evaluation runtimes remain very similar between their and
our solution for various input sizes N and for various thread counts, as depicted in Figure
6.1. In each case, two NNs containing a single RescaleLayer were evaluated individually,
one of which utilizing their implementation and one utilizing ours.
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Figure 6.1: Runtime comparison of scaling by s = 2 for N = 128, N = 2048, and N =
16384 in 1 to 16 concurrent threads.

When looking at scenarios with larger s, our solution outperforms Sander et al.’s state-of-
the-art solution by construction: As the only option with their sign-based BE is to concate-
nate additional s = 2 scaling layers, the total runtime expands logarithmically for larger
s, i.e., one rescale layer for s = 2, two rescale layers for s = 4, three rescale layers for
s = 8 etc. Our implementation does not increase in runtime for larger s: By reordering
our CRT base to have pe as the first modulus, we automatically scale by that prime num-
ber. Overall, we measued runtimes for s = 2, 4, 8, 16 utilizing the classical sign-based BE
and s = 3, 5, 7, 11, 13, 17, 19 utilizing our approach.

As we restricted our measurements for the most realistic case of 16-thread parallel execu-
tion for this second experiment, runtime comparison for input sizes smaller than N = 2048

proved too high in variance (%RSD > 300 for N = 128). Therefore, only the empirically
conclusive scenarios of N = 2048 and N = 16384 are depicted in Figure 6.2.
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Figure 6.2: Runtime comparison of scaling with increasing s for N = 2048 and N = 16384,
executed in 16 concurrent threads.
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6.2 Space Complexity

6.2 Space Complexity

In this section, we will compare the number of ciphertexts required to garble our modulus-
based BE solution with the previously proposed sign-based approach. Sander et al.’s
sign-based solution utilizes MRS to efficiently garble the approximated garbled sign op-
eration detailed earlier in Section 2.3.3. This use of MRS introduces a new parameter
set

∏t
i=1mi = M , on which the degree of approximation, the ciphertext count and the

resulting (garbling) runtime performance of their implementation depends. We choose
optimized values proposed by Ball et al. [BCM+19] for M and all mi such that perfect
accuracy is achieved for various CRT base sizes k. They are depicted in Table 6.1.

k
∏t

i=1mi M

3 25 32
4 26 · 3 78
5 54 · 4 · 3 648
6 60 · 53 7500
7 86 · 7 · 62 · 5 108360
8 92 · 7 · 6 · 53 · 4 1932000

Table 6.1: Optimal MRS parameters for exact sign garbled sign computation proposed by
Ball et al. [BCM+19]

According to Sander et al., their approximated garbled sign operation requires a total of

t
k∑

i=1

pi︸ ︷︷ ︸
Section 2.3.3, Step I

+2k

t∑
j=2

mj + 2(k − 1)︸ ︷︷ ︸
Section 2.3.3, Step II

+ m1︸︷︷︸
Section 2.3.3, Step III

(6.1)

ciphertexts per garbled input. Prior to this operation, the input must undergo a base
change projection to modulus 2, resulting in another 2(k − 1) ciphertexts per input. In
comparison, our modulus-based solution requires

p1k︸︷︷︸
Alg. 1, Line 7

+

k−1∑
i=1

pk(k − i)︸ ︷︷ ︸
Alg. 1, Line 9

+

k−1∑
j=0

pj+1︸ ︷︷ ︸
Alg. 1, Line 13

+ pk︸︷︷︸
Alg. 1, Line 15

(6.2)

ciphertexts for one garbled input. Both solutions scale linearly for increasing input counts,
which is why we restrict this analysis to N = 1. Our solution outperforms the old
approach for all k for which Ball et al. provided optimized MRS parameters, namely
3 ≤ k ≤ 11, cf. Figure 6.3
During garbled scaling by any s, all steps other than the BE at the end require no addi-

39



6 Evaluation

3 4 5 6 7 8 9 10 11
k

0

500

1000

1500

2000

2500

3000

3500

N
um

be
ro

fc
ip

he
rt

ex
ts

modulus-based BE sign-based BE

Figure 6.3: Ciphertexts required for garbled BE on one input (N = 1) in DASH using the
two different approaches for various CRT base sizes k. t and mi were selected
according to Table 6.1.

tional ciphertexts, as they only contain cryptographically free additions and multiplica-
tions by a constant. Since scaling by larger s with the classical sign-based approach results
in a logarithmically growing amount of RescaleLayers, the ciphertext count expands ac-
cordingly. At the same time, the ciphertexts required by our solution remain constant, as
visualized in Figure 6.4.
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Figure 6.4: Ciphertexts required for garbled scaling on one input (N = 1) in DASH using
the two different approaches for various scaling factors s ∈ [2, 19]. k = 8 for all
calculations, t and mi were selected according to Table 6.1.
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7 Conclusions

In this final chapter, we present a concluding summary of our approach and discuss the
extent to which the research questions presented in Chapter 1 were answered. Further-
more, we provide a detailed outlook on how our work can be continued and expanded
upon in the future.

7.1 Summary

To tackle the first research question, we developed a replacement for Sander et al.’s
[SBBE23a] sign-based BE that supports not only scaling by s = 2 but by any prime num-
ber (limited by choice of CRT base size k, i.e, s ≤ pk). This enables deploying a singular
RescaleLayer in DASH where previously multiple layers, each scaling by s = 2, where
utilized.
Our new approach applies an MRS-based algorithm for BE presented by Szabo and
Tanaka in 1967 [ST67] in the context of arithmetic GCs. Even though their algorithm is
relatively complex, we leveraged the fact that addition and multiplication by cleartext
constants are free in DASH’s optimized arithmetic GCs, allowing us to implement the
algorithm efficiently.
Therefore, our solution requires fewer ciphertexts per garbled input (cf. Figures 3.1 and
3.2), implying faster garbling times and improved memory efficiency. In the classical s = 2

scenario, evaluation runtimes between our solution and the old sign-based solution are
comparable and scale evenly for larger thread counts (cf. Figure 6.1). For s > 2, our so-
lution outperforms the old implementation very clearly: As our modulus-based BE does
not increase in evaluation runtime for larger s, scaling times remain constant. In con-
trast, the old approach by Sander et al. requires a logarithmically increasing number of
RescaleLayers, which results in longer scaling times, as shown in Figure 6.2.
Regarding the second research question, we found a way to implement a max-pooling
layer that directly builds upon Sander et al.’s approximated garbled sign implementation
without requiring further projection gates and, therefore, no additional ciphertexts during
garbling. We achieved this by expressing the ReLU function using Sander et al.’s SignGad-
get and several arithmetic operations that are cryptographically free in DASH’s optimized
arithmetic GCs, and then reducing the max-pooling’s max operation to computing ReLU,
as proposed earlier by Sander et al. [SBBE23b].
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7.2 Future Work

Regarding the improved scaling operation, the next logical step is to support scaling by
a product of multiple prime moduli. The theoretical foundation for this approach is de-
tailed in Section 5.2.2. Enabling scaling by a product of prime moduli would give us more
options in selecting the scaling factor s and would make the choice of the CRT base size k

less dependent on specific scaling factors used across the NN.
Secondly, our new implementation must be extensively tested not just in the controlled
and isolated environments used in Chapter 6, but also in realistic application scenarios
that more closely mirror real-world conditions. Our starting point for generalized scal-
ing was model benchmarking experiments conducted by Sander et al. (cf. Figure 1.1). It
would be interesting to investigate to what extent RescaleLayers still present a performance
bottleneck now that our optimizations can reduce their count substantially. Furthermore,
the reduced ciphertext counts during the garbling process imply less overall memory con-
sumption, as discussed earlier. This may, in turn, allow for the garbling of deeper and
more complex NN topologies within the DASH framework.
Currently, only the online phase of our two contributions to DASH offers CPU paralleliza-
tion. While the offline phase of the GC protocol may be less interesting than the online
phase in terms of runtime performance in most applications, we still think optimizing this
metric during the offline phase using OpenMP [DM98] would be worth pursuing.
We did not conduct any experimental evaluation of our new max-pooling operation for
DASH. Investigating the runtime efficiency and inference accuracy implications of this
new feature could lead to interesting insights. By deploying this new garbled layer and
leveraging the practical possibilities created by faster scaling, exciting new opportunities
emerge regarding the deployment of deeper garbled CNNs.
Lastly, GPU support via CUDA is a central feature of DASH. It will be essential to ensure
that our contributions become compatible with CUDA, especially since the scaling perfor-
mance bottleneck becomes even more pronounced when offloading circuit evaluation to
a GPU, cf. Figure 1.1.
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