
The Phantom Protocol
Harnessing Hypercubes and SIS in Post-Quantum Cryp-
tography
Das Dunkle Protokol
DieNutzung vonHypercubes und SIS in der Post-Quanten-
Kryptographie

Masterarbeit

im Rahmen des Studiengangs
IT-Sicherheit
der Universität zu Lübeck

vorgelegt von
Julian M. Behrensen

ausgegeben und betreut von
Prof. Dr. Sebastian Berndt
Prof. Dr. Thomas Eisenbarth

mit Unterstützung von
Paula Arnold, MSc.

Lübeck, den 07. November #0#4

Abstract

In this thesis, we explore the optimization of cryptographic protocols in the
context of post-quantum security, where we focus on reducing the computa-
tional and communication overhead associated with zero-knowledge proofs
and syndrome decoding. In particular, we examine the integration of Small
Integer Sharing (SIS) and hypercube structures to optimize syndrome de-
coding, a key problem in coding theory with applications in post-quantum
cryptography. Our contributions include the development of a novel proto-
col that significantly reduces the complexity of syndrome decoding in multi-
party computation in the head (MPCitH) frameworks by leveraging SIS and
hypercube geometries. In addition, we present a performance analysis of
our optimized protocol, highlighting its efficiency gains compared to existing
techniques. This research lays the groundwork for more practical implemen-
tations of post-quantum cryptographic protocols, enhancing their feasibility
for real-world applications in secure communication and computation.

iii

Zusammenfassung

In dieser Arbeit untersuchen wir die Optimierung kryptographischer Pro-
tokolle im Kontext der Post-Quanten-Sicherheit mit einem Schwerpunkt auf
der Reduzierung des Rechen- und Kommunikationsaufwands, der mit Zero-
Knowledge-Beweisen und Syndrom-Dekodierung einhergeht. Insbesondere
betrachtenwir die Integration von Small Integer Sharing (SIS) undHypercube-
Strukturen zur Optimierung der Syndrom-Dekodierung, einem zentralen
Problem in der Kodierungstheorie mit Anwendungen in der Post-Quanten-
Kryptographie. Unsere Beiträge umfassen die Entwicklung eines neuartigen
Protokolls, das die Komplexität der Syndrom-Dekodierung in Mehrparteien-
Berechnungs-umgebungen (MPC)durchdieNutzungvonSISundHypercube-
Geometrien erheblich reduziert. Darüber hinaus präsentieren wir eine Leis-
tungsanalyse unseres optimierten Protokolls und heben dessen Effizien-
zgewinne im Vergleich zu bestehenden Techniken hervor. Diese Forschung
bildet die Grundlage für praktischere Implementierungen post-quanten-
kryptographischer Protokolle und erhöht deren Anwendbarkeit für reale An-
wendungen in sicherer Kommunikation und Berechnung.

v

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur
unter Benutzung der angegebenen Hilfsmittel angefertigt zu haben.

Lübeck, 07. November #0#4

vii

Julian M . Behrense

Acknowledgements

I would like to express my deepest gratitude to everyone who has supported
me throughout the journey to complete my master’s thesis. This work would
not have been possible without the guidance, encouragement and support of
many individuals.
Firstly, I would like to extend my sincere thanks to my advisor, Dr. Sebas-
tian Berndt, whose expertise, guidance, and encouragement were invaluable
throughout every stage of this research. Paula Arnolds insightful feedback
helped me overcome many challenges. Furthermore, I am grateful to Yara
Schütt and Alexander Becker for their constructive criticism and the time
devoted to improving this thesis.
On a personal note, I would like to thank my family and friends for their en-
couragement, patience, and love. A special thanks to my girlfriend Alina Hilck,
your words of motivation and unwavering belief in me have been a source of
unending strength during challenging times. And thanks to Yannik Pohl for
being agreat co-workingpartner, I don’t think Iwould havebeen as disciplined
without you.
Lastly, my heartfelt thanks go to everyone who, directly or indirectly, played
a role in the successful completion of this thesis. I am immensely grateful to
each of you.

ix

Contents

1 Introduction 1
1.1 Thesis Overview and Objectives . #
1.# Structure of the Thesis . 3

2 Notation #

3 Preliminaries 9
3.1 Lemmata . ’
3.# Cryptographic Definitions . 1#
3.3 Canonical Inclusion . 1(
3.4 Zero-Knowledge Proofs . 1(
3.(Commitments . 17
3.) Additive Secret Sharing . 1’
3.7 Multi-Party Computation . #1
3.8 Multi-Party in the Head Paradigm . ##
3.’ Multi-Party Product Verification . #(
3.10Syndrom Decoding . #7
3.11Zero-Knowledge Protocol for Syndrome Decoding #’

3.11.1Syndrome Decoding in the Head (SDitH) 3#
3.11.#Communication Costs . 3)
3.11.3Security Proof . 37

4 Small Integer Sharing 41
4.1 Sharing on Integers and Opening with Abort 4#

4.1.1 Binarity Proof fromMasking and Cut-and-Choose Strategy 47
4.1.# Proof . (1
4.1.3 Performance Analysis . (#

4.# Security Proof: Cut-and-Choose Strategy (3

MPCitH with Hypercube Structure #9
(.1 Rearranging shares into a Hypercube . (’

(.1.1 Performance Analysis .)7

xi

Contents

(.1.# Security Proof .)’

’ Tree-based Pseudorandom Number Generator (#
).1 One Tree to Rule them All . 77

(Methodology)1
7.1 SIS Hypercube Tree . 81

7.1.1 Small Integer Sharing for Syndrome Decoding 81
7.1.# SIS Hypercube . 84
7.1.3 SIS Hypercube OneTree . 8)

7.# Performance Analysis . ’(
7.3 Security Proof . ’’

) Discussion 11#
8.1 Communication Cost Analysis . 11)
8.# Computational Cost Analysis . 11’
8.3 Future Work . 1##

9 Conclusion 123

References 12#

xii

1 Introduction

In this rapidly evolving digital landscape, data security has become a primary
focus for researchers. With more services moving to digital platforms, ensur-
ing the confidentiality, integrity, and authenticity of communications is criti-
cal. Cryptographic protocols form thebackboneof secure communication and
computation, protecting individuals, businesses, and governments frommali-
cious attacks and data breaches. However, while robust againstmany classical
attacks, current encryption and signature schemes are vulnerable to quantum
algorithms like Shor’s, which can break widely used cryptographic methods.
This looming threat has sparked the development of post-quantum crypto-
graphic (PQC) protocols that resist both classical and quantum attacks. In re-
sponse to these challenges, the National Institute of Standards and Technol-
ogy (NIST) launched the PQC standardization process. In this context, zero-
knowledge proofs (ZKPs) andmulti-party computation (MPC) protocols have
become vital tools.
Zero-knowledge proofs allow one party (the prover) to convince another party
(the verifier) that they possess knowledge of a specific piece of information,
such as a solution to a mathematical problem, without revealing anything
about the information itself. This property is essential in privacy-critical set-
tings, such as authentication, blockchain transactions, and secure voting. Fur-
thermore, MPCprotocols enablemultiple parties to jointly compute a function
on their inputs while keeping these inputs private. MPCs are crucial in collab-
orative data analysis scenarios where parties wish to compute results from
combined datasets without disclosing their data. While most of the intro-
duced PQC protocols have focused on lattice-based cryptographic schemes,
such as Learning with Errors (LWE), recent research by Yilei Chen [Che#4] has
uncovered potential vulnerabilities in lattice-based systems, raising concerns
about their long-term security. It is important to note here that the paper
contained some errors that led to its removal. However, this has still shifted
attention to alternative cryptographic schemes, such as code-based cryptog-
raphy, which has demonstrated stable security for over 40 years.
One of the most promising alternatives is the syndrome decoding problem, a

1

1 Introduction

foundational problem in code-based cryptography. Unlike lattice-based cryp-
tosystems, code-based schemes have remained resilient to both classical and
quantum attacks, making them an attractive option for post-quantum secu-
rity. At its core, the syndrome decoding problem involves finding the closest
codeword to a given syndrome, which is computationally hard. The syndrome
decoding problem gained further significance when it was integrated into
the MPC-in-the-Head (MPCitH) framework by Feneuil et al. in #0## [FJR##].
This innovation demonstrated the potential of syndrome decoding in secure
multi-party computation protocols, providing a strong foundation for privacy-
preserving cryptographic applications.
Despite their theoretical strengths, the practical deployment of these cryp-
tographic techniques is often hindered by the significant computational and
communication overhead required to ensure security. This thesis addresses
these efficiency challenges by optimizing the sharing and verifying of a secret.
By leveraging the geometric structure of hypercubes and integrating small
integer sharing (SIS) schemes, this work aims to reduce the associated over-
heads, thus making these protocols more efficient and feasible for real-world
applications.
Building on this, Aguilar-Melchor et al. [AGH+##] introduced the hypercube
structure to optimize syndrome decoding in MPCitH, significantly reducing
computational costs and bringing the protocol closer to practical deployment.
Despite these advancements, further refinements are needed to fully realize
the potentiaprotocols’ protocols for large-scale applications.
This research contributes to developing more practical post-quantum cryp-
tographic systems, ensuring that they are better equipped to handle future
quantum threats by focusing on syndrome decoding and optimizing both
computational and communication costs.

1.1 Thesis Overview and Objectives

The primary objective of this thesis is to present novel approaches to reduce
the overhead associatedwith zero-knowledge proofs and syndrome decoding
within multi-party computation frameworks. To achieve this, we propose the
following key contributions:

1. Optimization of Syndrome Decoding using SIS and Hypercube Struc-
tures: Syndrome decoding is a key problem in coding theory used in

#

1.2 Structure of the Thesis

several cryptographic applications, particularly post-quantum cryptogra-
phy. By organizing the decoding process in the structure of a hypercube,
we aim to reduce the computational complexity typically associatedwith
this operation. This thesis explores how small integer sharing (SIS) can
be integrated with hypercube structures to reduce further the number
of operations required during syndrome decoding, particularly in high-
dimensional settings.

#. Modified Security Proof: In addition to these optimizations, we provided
the modified security proof for our protocol, ensuring that the improve-
ments do not compromise the underlying cryptographic guarantees
while maintaining the required security properties.

3. Implementation of the optimized protocol: We implemented the original
syndrome decoding in the head protocol, the hypercube-based version,
and our protocol in Python to show the practical impact of the different
optimizations.

By addressing both computational and communication challenges, this the-
sis contributes to advancing the field of cryptography, making it more feasible
to implement secure, large-scale computations without compromising effi-
ciency or security, thus making post-quantum cryptographic protocols more
accessible for real-world applications.

1.2 Structure of the Thesis

This thesis is structured as follows. In Chapter #, we give an overview of the no-
tation used in the thesis to provide the reader with a fixed set of variables and
their meaning. After that, we present the mathematical and cryptographic
background in Chapter 3. We introduce the mathematical building blocks
and provide an overview of the necessary cryptographic elements, including
the theoretical underpinnings of syndrome decoding multi-party computa-
tion and zero-knowledge proofs. In Chapter 4, (, and), we introduce the
three proposedmethods for optimizing syndromedecoding, startingwith SIS,
followed by the hypercube structure and tree-based pseudorandom number
generators. We combine these optimizations in Chapter 7, which forms the
main contribution of this thesis. Here, wedescribe the necessarymodifications
to the optimization techniques and the final protocol.

3

1 Introduction

In Chapter 8, we look at our protocol in a practical scenario and discuss its
performance regarding communication and computational costs. Finally, in
Chapter ’, we conclude this thesis by summarizing the main contributions
and outlining potential avenues for future research.

4

2 Notation

Spaces
Z For number spaces
Z For polynomials in big letters and in small letters for

vectors
Z For prover and verifier in texts and in formulas matri-

ces
Z For challenge space and sets in general
Z For algorithms, functions and extractors
Z For security parameters besides λ and general pa-

rameters
Operations

· Arithmetic multiplication
/ Arithmetic division
+ Arithmetic plus
→ Arithmetic minus
◦ Coordinate wise multiplication
⊕ XOR operation
∑

Coordinate wise sum
↔·, ·〉 Scalar product
| · | The lengthof a vector or number of elements in a field
· $←→ · Random sampling of a given element or vector

General
1 A vector of ones
0 A vector of zeros

[B] = {0, . . . , B → 1} The numbers from 0 to the given maximum B

sk Secret key
pk Public key
∏

A non-specified protocol
deg(·) A function that returns the degree of a given polyno-

mial (·)

(

2 Notation

Multy-Party Computation
n Number of parties
N Number of shares
x The secret

!x" Shares of the secret x
!x Auxiliary value of the secret

i ≃ [N] Index of one share
i∗ Index of the hidden share

j ≃ [n] Index for one party
MPCitH

ε The soundness error
ε̃ The inverse soundness error
t The number of points for the polynomial evaluation

z ≃ Fpoints Point for the polynomial evaluation
τ The number of protocol executions
P Prover
V Verifier
P̃ General prover (does not need to be honest)
Ṽ General verifier (does not need to be honest)
A A probabilistic polynomial time adversary
E The extractor
S A Simulator

ϵ ≃ Fpoints Challenge points for product verification
h The commitment hash of the secret shares
h

′ The commitment hash of the batch product verifica-
tion shares

↔P,V〉 Instance of a zero-knowledge between P and V

Syndrome Decoding
FSD Finite field of the syndrome decoding
Fpoly Finite field extension of FSD from which the polyno-

mials S,Q,P,F are selected
Fpoints Finite field extension of Fpoly from which the evalua-

tion points of S,Q,P,F are selected
x ≃ Fm

SD The secret of the syndrome decoding
H ≃ Fm−k×m

SD The matrix of the syndrome decoding

)

y ≃ Fm−k
SD The resulting vector of the syndromedecoding calcu-

lation H · x = y

m ≃ FSD The length of the solution x

k ≃ FSD A security parameter for the syndrome decoding
problem

w ≃ FSD Hamming weight bound
a, b, c Elements of the Beaver triplet such that a · b = c

α,β, v Communication outputs drawn from Fpoints

wt(·) The function to calculate the hamming weight of a
given vector

Small Integer Sharing
g ≃ Zn

q The vector containing the elements to choose for the
subset sum problem

hZq The final sum of the subset sum problem
r

$→→ {0, 1}n The random vector for the cut-and-choose strategy
M The number of generated vectors r
L The set of indices for the challenges of a random vec-

tor r
J The set of indices for the second challenge regarding

the opening of shares
Ev,¬Ev An event and the complementary event

Aa
j The rejection event with

⎧
⎨

⎩
a = 0 if xj = 0

a = 1 it xj = 1

Hypercube
D The dimension of the hypercube
NH Number of shares per hypercube dimension
ls A leaf-party
ms Amain-party

TreePRG
hs The number of sub-trees that share a hidden share

Table #.1: This table displays the notation used in this thesis, including variable
names and theirmeaning as well as general notations for polynomi-
als, finite fields and other.

7

3 Preliminaries

This section provides the theoretical foundations for this thesis’s cryptographic
protocols and optimizations. We begin by outlining key lemmata, crypto-
graphic definitions, and the fundamental concepts of zero-knowledge proofs
andmulti-party computation (MPC). In connection to this, we describe addi-
tive secret sharing and the MPC-in-the-Head (MPCitH) paradigm, which are
integral to the protocol we will optimize in this work.
Additionally, we introduce the syndrome decoding problem, a central prob-
lem in code-based cryptography, which serves as the basis for the protocol
optimizations explored in later chapters. These preliminaries ensure a com-
prehensive understanding of the underlying methods used throughout the
thesis.

3.1 Lemmata

In this section, we begin by presenting key lemmata that will serve as the
mathematical tools underpinning various cryptographic proofs throughout
this thesis. The first is theDemillo-Lipton-Schwarz-Zippel lemma, short Schwatz-
Zippel lemma, which is critical in verifying polynomial identities over finite
fields. This lemma provides a probabilistic bound, ensuring that a non-zero
polynomial rarely evaluates to zero on randomly chosen points. In the context
of cryptographic protocols, this helps us efficiently verify the correctness of
certain computations without revealing sensitive information.

Lemma 1: Multi-point Schwartz-Zippel (variant 1)
LetP ≃ F[X] be a non-zero polynomial in one variable of atmost degree
d > 0. Moreover, let S ⊆ F be a non-empty set. For any t ≥ 1:

Pr[P(ri
$←→ S) = 0, ∀i ≃ [t]] ≤

(d
t

)
(|S|

t

) . (3.1)

’

Preliminaries

Lemma 1: Multi-point Schwartz-Zippel (variant 1)
Proof: When uniformly sampling t distinct elements from S , there are(|S|

t

)
possible combinations. However, since the polynomial can have at

most d roots, the event of interest can only occur for
(d
t

)
of these samples

[AGH+##].

Themulti-point Schwarz-Zippel lemma can be extended to apply to syndrome
decoding combined with the MPCitH paradigm. It provides a more nuanced
view of polynomials’ behavior under certain constraints, which is helpful when
considering applications with multiple accounted roots.

Lemma 2: Multi-point Schwarz-Zippel (variant 2)
Let R ≃ F[X] be a polynomial of degree d > 0. For any S ⊂ F and any
t, l ≥ 1,

Pr
r1,...,rt

$←→S
[#{i : R(ri) = 0} = l|{ri} are unique] ≤

maxi≤d

{(i
l

)
·
(|S|−i

t−l

)}

(|S|
t

)

If t · d ≤ l · (|S|→ 1), we have:

Pr
r1,...,rt

$←→S
[#{i : R(ri) = 0} = l|{ri} are unique] ≤

{(i
l

)
·
(|S|−i

t−l

)}

(|S|
t

)

The proof for this lemma is in Appendix C of [FJR##].

With the Schwarz-Zippel lemma providing a probabilistic framework for poly-
nomial verification, we now turn to the XOR lemma. This lemma is crucial for
efficiently handling bitwise operations in cryptographic protocols. It allows us
to reconstruct integers using XOR and AND operations, which is particularly
useful for binary secret sharing and secure computation. This will play an im-
portant role in ensuring the correctness of secret reconstruction while main-
taining efficiency in the Small Integer Sharing in Section 4.

10

#.1 Lemmata

Lemma 3: in Annex 1 of [Gou01]
For any integers u, v, the following holds:

u→ v = (u⊕ v)→ 2 · (u ∧ v) mod 2K (3.#)

Which can be refactored to the following:

u+ v = (u⊕ v) + 2 · (u ∧ v) mod 2K (3.3)

Having established the XOR lemma for handling bitwise operations, we now
introduce the Splitting Lemma, which provides a probabilisticmethod for ana-
lyzing subsets of larger sets. This lemma is particularly useful in cryptographic
protocols where we need to isolate specific subsets of data while maintain-
ing certain security guarantees. In the context of multi-party computation
and secret sharing, the Splitting Lemma helps ensure that security properties
hold even when only partial information is revealed, making it essential for the
soundness of our protocols.

Lemma 4: Splitting Lemma [PS00]
Given A ⊂ X × Y and Pr [(x, y) ≃ A] ≥ k, then for any α ≃ [0, 1) let:

B =
{
(x, y) ≃ X × Y |Pry′∈Y

[
(x, y′) ≃ A

]
≥ (1→ α) · k

}
(3.4)

Then, the following is true: Pr[B] ≥ α · k and Pr[B|A] ≥ α.

Another crucial lemma for the soundness of MPCitH protocols is the forking
lemma. It provides the security of multi-round interactive protocols, such as
5-round protocols, which involve several back-and-forth exchanges between
the prover and verifier. The verifier sends multiple challenges across different
rounds in these protocols, and the prover must respond correctly to each. The
forking lemmaensures that if an adversary can produce valid responses for dif-
ferent challenges (e.g., by making different oracle calls), they can be forced to
reveal key information about their strategy, helping to detect potential cheat-
ing attempts.

11

Preliminaries

Lemma #: Forking Lemma for #-pass protocols [DGV+1’]
Given a 5-pass signature scheme S with a security parameter k. Let
A be a probabilistic polynomial time algorithm that is given public
data as input. Furthermore, assume that A outputs a valid signature
(σ0,σ1,σ2, h1, h2) for amessagemwith a non-negligible probability. Then
replaying A with the same tape and the same response to the query
corresponding to O1, but with a different output to the second oracle
O2, will reply with a second distinct and valid signature (σ0,σ1,σ′2, h1, h

′
2).

These two signatures correspond to the same message m and have
h2 0= h2 with non-negligible probability.

With the key lemmata in place, we can now focus on the core cryptographic
concepts that form the foundation of our protocols.

3.2 Cryptographic Definitions

In this section, we describe the core cryptographic concepts relevant to the
analysis and design of secure protocols. These definitions provide the neces-
sary formalism for discussing security proofs and thebehavior of cryptographic
functions. We start with the indistinguishability concept, which states that two
distributions are indistinguishable from each other within a given time span.
In the context of MPCitH, it ensures that, even if an adversary observes the out-
put or exchanges in theprotocol, they shouldbeunable to distinguishwhether
the data come from an honest execution or a random source.

Indistinguishability
Given two distributionsX,Y , a time bound t and a function ϵ. ThenX,Y

are (t, ϵ)-indistinguishable if for an algorithm running in time t there is
a function D : {0, 1}m → {0, 1} with |Pr[D(X) = 1] → Pr[D(Y) = 1]| ≤ ϵ(λ).
Note that ϵ(λ) is a negligible function, meaning for sufficiently large λ,
its output becomes insignificantly small. We also consider three more
specific indistinguishabilities:

1. Computational indistinguishability: X,Y are computational in-
distinguishable if t = poly(λ) and ϵ is a negligible function in λ.

#. Statistically indistinguishability: X,Y are statistically indistin-

1#

#.2 Cryptographic Definitions

Indistinguishability
guishable when t can be unbounded while ϵ remains a negligible
function in λ.

3. Perfect indistinguishability: X,Y are perfectly indistinguishable
if ϵ = 0, meaning no algorithm, regardless of running time, can
distinguish between X and Y with any advantage.

Additionally, indistinguishability is essential for the pseudorandomgeneration.
A pseudorandomgenerator (PRG) is an algorithm that takes a short, truly ran-
dom input (called a seed) and expands it into a longer, seemingly randomout-
put. The output of a PRG is designed to be indistinguishable from a truly ran-
dom sequence.

Pseudorandom generation (PRG)
Let G : {0, 1}∗ → {0, 1}∗ be a function that takes a binary string as input
and returns a binary string. Additionally let L(·) be a polynomial with
G(S) ≃ {0, 1}L(λ) for any input S ≃ {0, 1}λ. Following this G is a (t, ϵ)-secure
pseudorandom generator if it satisfies these two properties:

• Expansion: L(λ) > λ, whichmeans that given the input S the gen-
erated output is longer than the input.

• Pseudorandomness: The two distributions {G(S)|S← {0, 1}λ} and
{F|F ← {0, 1}L(λ)} are (t, ϵ)-indistinguishable.

These two techniques give us the basis for describing collision-resistant hash
functions. These functions generate a seemingly random value based on their
input while ensuring that it is computationally infeasible to find a different in-
put such that the function generates the same output (collision).

Collision-Resistant Hash Functions
A function or a family of functions H : {0, 1}m → {0, 1}n is a collision-
resistant hash function if it satisfies the following two conditions for a
given security parameter λ:

• Length compression: The input string {0, 1}m is longer than the
output string {0, 1}n and therefore we havem < n with a common

13

Preliminaries

Collision-Resistant Hash Functions
choice ofm = n/2.

• Hard to find collision: For all non-uniform probabilistic polyno-
mial time (PPT) algorithms A there exists a negligible function ϵ,
such that

Pr[(x0, x1)← A(1n,H) : x0 0= x1 and H(x0) = H(x0)] ≤ ϵ(λ)

This means that it is difficult (≤ ϵ(λ)) to find two different inputs
(x0, x1) for the given hash function H, which results in the same
hash.

With this in mind, we can introduce cryptographic signatures, which are cru-
cial in ensuring the authenticity and integrity of communications in crypto-
graphic systems. We will give a short and informal definition, as we focus on
the protocols that form the bases to produce signatures but not the actual
signature generation.

Cryptographic Signature
A cryptographic signature, also called a digital signature, is a technique
used to verify amessage’s authenticity, binding, and integrity. Meaning
that a receiver can verify that the sender is who she appears to be and
that themessage has not been tamperedwith. Thus, a signature needs
to satisfy the following three characteristics:

• Authenticity: The sender attaches a signature to themessage, en-
suring that she is the sender.

• Binding: The sender is bound to the content of the message.

• Integrity: Neither the sender nor an attacker can manipulate the
message after signing.

In addition, these techniques need to provide a signing function and a
verification function, both at a reasonable expense. One can implement
these characteristics using an asymmetric technique such as the RSA
signature or utilize zero-knowledge protocols, thorough, for example,
MPCitH (3.8).

14

#.# Canonical Inclusion

Now that we have a basic understanding of cryptographic signatures, we can
explore other foundational concepts contributing to secure protocol design.

3.3 Canonical Inclusion

One such concept is the canonical inclusion function, commonly encountered
in set theory and cryptography. The canonical inclusion map formalizes the
relationship between a subset and its parent set by treating each element of
the subset as an element of the parent without modification. Intuitively, this
map preserves the identity of elements from the subset within the parent set,
ensuring that their properties remain intact. This is essential for thepolynomial
generation of the syndrome decoding in the head protocol.

Canonical Inclusion
The inclusion map, also known as the inclusion function, insertion, or
canonical insertion, is a mathematical function that maps each ele-
ment of one set to its representation in another set. For this, the first
set of elements must be a subset of the second set. The ↪→ denotes the
inclusion map, and the first set is a subset of the second.

For example, we are given a set S and a set T . The inclusion map for S to T

maps each element of S to itself in the set T and is denoted as S ↪→ T . Thus,
we also know that S ⊆ T holds.
Another essential technique for MPCitH protocols are zero-knowledge proofs,
which we describe in the next section.

3.4 Zero-Knowledge Proofs

This section defines the essential properties of a zero-knowledge proof of
knowledge. A zero-knowledge proof is a two-party protocol between a prover
P and a verifier V for a given language L ≃ NP . It is represented as ↔P,V〉, where
↔P,V〉(x) is the execution of the protocol on a given witness (possible solution
to the problem) x. The proof must satisfy several essential properties.
The core idea is that the prover must show the verifier that their standard in-
put x belongs to the given language L and satisfies specific properties without
revealing any additional information. For example, the provermight have a se-

1(

Preliminaries

cret x related to a vector y and a scalar a such that ↔x, y〉 = a and needs to prove
to the verifier that x satisfies this equation. We formalize this by defining the
following three properties: completeness, soundness, and zero-knowledge.

(Perfect) Completeness
The completeness property for a zero-knowledgeproof ↔P,V〉 states that
if both theproverP and the verifierV follow theprotocol honestly,mean-
ing they do not deviate from the agreed-upon set of steps (the protocol,
which defines the rules and interactions between the parties), and the
prover has a correct witness x, then for every such witness x ≃ L, V al-
ways accepts:

Pr[↔P,V〉(x) = 1] = 1 (3.()

Completeness ensures that an honest prover, using a valid witness, will always
convince an honest verifier. This property is necessary for the protocols correct-
ness, ensuring that the protocol functions as intended.

Soundness
The proof of knowledge is so-called sound, with a soundness error ε, if
an honest verifier accepts with probability less than ε for a probabilistic
polynomial time adversary A using a witness x /≃ L:

Pr[↔A,V〉(x) = 1] ≤ ε (3.))

In otherwords, a proverwhodoesnot have a validwitness x cannot successfully
convince the verifier of his knowledge with probability greater than ε. Thus,
soundness prevents the verifier frombeingdeceivedby amaliciousproverwho
presents an invalid witness.

Honest Verifier Zero-Knowledge (HVZK)
TheHVZKproperty states that there is a simulator S for a proof of knowl-
edge, which operates in probabilistic polynomial time. This simulator
can produce output transcripts that are computationally indistinguish-
able from distributions of transcripts from an honest execution of the
protocol without knowing a witness x.

1)

#.5 Commitments

This shows that running the protocol does not reveal any information about
the witness to an honest verifier. In the following, we will use zero-knowledge
proof as a shorthand for HVZK proof.
With the concept of honest-verifier zero-knowledge established, we now in-
troduce commitment schemes, another essential cryptographic primitive that
works in conjunctionwith zero-knowledgeproofs to form theMPCitHprotocol.

3.# Commitments

In connection to zero-knowledge proofs, we need the so-called commitment
scheme, which is a cryptographic primitive that allows one to send a public
value C , the commitment, to another party to reveal the correlated hidden
value later. Revealing this value is called opening and requires a decommit-
ment value D. In order to have a helpful commitment scheme, it is vital that
once theparty commits to the correlatedhidden value, they shouldnot be able
to change it later on (binding). In addition, every receiving party should only be
able to gain knowledge of the hidden value by using the decommitment value
D (hiding). Considering these requirements, we can define the following char-
acteristics of a commitment scheme. The first three properties are essential
for any commitment scheme, while the last two ensure the scheme is secure.

Commitment Scheme
Any commitment schemeconsists of twoprobabilistic polynomial time
(PPT) algorithms, the commitment com and the opening algorithm
open, which we define as:

• com(M), given an input M ≃ {0, 1}∗ = M the commitment algo-
rithm outputs a tupel (C,D) ← com(M,p) consisting of the com-
mitment C and the decommitment D generated using the com-
mitment randomness p.

• open(C,D), given the commitment and a decommitment open
returns either the hidden value M in case of a matching pair or
the bottom symbol ⊥ otherwise.

These properties, in combination with correctness, ensure the correct
modeof operationof a commitment scheme,whilebindingandhiding
define its security.

17

Preliminaries

Commitment Scheme
Correctness ensures that the original value will always be correctly re-
covered if the commitment is formed and appropriately decommitted.
This property is vital for the integrity of any commitment scheme.

• Correctness: Given the commitment com(M) ← (C,D) without
any manipulation, then open(C,D) should always return the hid-
den valueM .

Perfectly binding ensures that a committed value cannot be altered
once it has been committed.

• Perfectly Binding: In order for a commitment scheme to be per-
fectly binding, any PPT algorithm for a given security parameter
λ must have a probability of zero for finding C,D,D′ such that
open(C,D) = M and open(C,D′) = M ′ with M 0= M ′. This means
that given the same commitmentC , the probability of finding two
different decommitments D and D′ such that the PPT algorithm
obtains different messages M and M ′ from the same commit-
ment is zero. Thus, it is impossible to change the hidden value of
the commitment afterwards.

We can reduce the binding characteristic for realistic scenarios by using
a computationally bindingdefinition. It states that theprobability of this
algorithm finding such a tuple is a negligible function in λ.
Lastly, perfectly hiding prevents an adversary from gaining any knowl-
edge of the committed value until it is opened.

• Perfectly Hiding: A commitment scheme com(M) → (C,D) is
perfectly hiding if for any two messagesM,M ′ the distributions of
{C : (C,D) ← com(M)}λ∈N and {C : (C,D) ← com(M ′)}λ∈N are
perfectly indistinguishable. In other words, it is impossible for any
algorithm to identify which message M or M ′ was used to gener-
ate the commitment C , and thus, no information can be gained
from C .

The perfectly hiding property can bemodified to be statistically or com-
putationally hidden by reducing the bound on the distributions to be
statistically or computationally indistinguishable.

18

#.6 Additive Secret Sharing

It is important to note that a commitment scheme cannot be perfectly bind-
ing and hiding. On the one hand, perfectly binding requires the commitment
scheme to be deterministic to ensure that the commitments correspond to
exactly one input value. On the other hand, the perfectly hiding property re-
quires the commitment scheme to contain randomness so that no informa-
tion about the input value is leaked. This contradiction becomes clear with the
following example:

Hiding Binding Contradiction
Given a perfectly binding commitment scheme com(M)→ (C,D) with
M ≃ M, we know that no other input M ′ ≃ M can correspond to the
commitment C . However, an unbounded adversary could now gener-
ate a commitment for every message in M and get a unique commit-
ment for eachmessage. This would inadvertently tell the adversary the
input message M for the commitment C and thus break the perfectly
hiding property.

In conclusion, the commitment scheme provides a secure way of locking in a
value while keeping it hidden until the appropriate time to reveal it. This way,
commitment schemes form the backbone of many cryptographic protocols,
including MPCitH.

3.’ Additive Secret Sharing

To perform the multi-party computation, we also need to be able to break up
our secret into multiple parts and share these with the other members of a
protocol. For this, we can use the common technique of additive secret shar-
ing (AddSS), where we sample N → 1 random values, sum them up, and calcu-
late the difference (auxiliary value) between them and the secret. The auxiliary
value is then used as the Nth random value. After that, each random and the
auxiliary value can be sent to one of the parties. As long as at least one of the
sent values stays hidden, it is impossible to obtain the secret. With this inmind,
we can give a formal definition as follows:

1’

Preliminaries

Additive Secret Sharing
Let there be nmanyparties to share the secret xwith, and thusN shares
that need to be created. The N → 1 first shares, written as !x"i with i ≃
{1, . . . , N → 1} are generated via a pseudorandom generator (PRG) over
a finite field F

!x"i
$←→ F∗.

Then the last share !x"N is calculated via:

!x"N = x→
N−1∑

i=1

!x"i.

Thus, the final output is a tupel of N shares !x" = (!x"1, . . . , !x"N). The
reconstruction works by summing up all shares:

x =
N∑

i=1

!x"i.

Using this sharing, obtaining the secret xwithout knowing all N shares
is impossible. Furthermore, each party can perform the following com-
putations and preserve a valid sharing:

• Addition: Given two shares or sets of shares !xA", !xB" one can
calculate the sum of them.

∀i ≃ {1, . . . , N}, !xA + xB"i := !xA"i + !xB"i

In shorthand this is written as !xA + xB" := !xA" + !xB"

• Additionwith a constant: Given a constant c and the set of shares
!x", one calculates the sum by adding the constant to the first
share:

(
∀i ≃ {1, . . . , N}

) !x+ c"1 := !x"1 + c

!x+ c"i := !x"i ∀i ≃ {2, . . . ,M}

This is denoted as !x+ c" := !x" + c

• Multiplication: Themultiplicationof shares canbe realized through
Beaver triples [Bea’#], which require additional communication

#0

#.7 Multi-Party Computation

Additive Secret Sharing
between the parties. The additional input is a secret-shared triplet
!a", !b", !c" where the values a and b are unknown to all parties, but
the result c = a · b is published. This triplet can then be used to val-
idate a different triplet by sacrificing it in the process. This means
both a and b are revealed to all parties. We will describe how this
is used in the multi-party computation in the head protocol in
Section 3.’.

• Multiplication with a constant: The multiplication with a con-
stant works similar to the addition with a constant, but instead of
multiplying the constant with the first share, it is multiplied with
every share:

∀i ≃ {1, . . . , N}, !c · x"i := c · !x"i

The shortened notation is !c · x" := c · !x".

After gaining a good understanding of zero-knowledge proofs, commitment
schemes, and additive secret sharing, wewill describe themulti-party compu-
tation paradigm in the next section.

3.(Multi-Party Computation

With the multi-party computation (MPC) protocol, n parties of the protocol
that have a secret xi can compute a function f on these secretswithout leaking
any information about their secret to the other parties. The only information
that each party is allowed to gain from the protocol is the information that can
be reconstructed from the output y = f(x1, . . . , xn). This requires the parties to
be honest, meaning they follow the protocol

∏
and do not share their secret

with any other party.
A more realistic approach is the semi-honest MPC protocol, which commonly
utilizes the additive secret sharing introduced in the previous section. Semi-
honest means that each party follows the protocol but is allowed to share its
secret with the other corrupt parties. Considering the additive secret sharing
with N shares, each party needs all other shares to recover the secret x of the
protocol. Thus, it is (N → 1) secure, i.e. secure, even if N → 1 parties collaborate.
Moreover, we can define the evaluation function of the MPC protocol as a

#1

Preliminaries

boolean decision function f(x) : Z∗ → {0, 1}, which is needed for the Multi-
party in the head paradigm described in the next section. The boolean deci-
sion function returns a truth value, such as Accept (1) or Reject (0) instead of a
more complex result.

3.) Multi-Party in the Head Paradigm

For the MPC protocol to be used in a ZK-proof environment, Ishai, Kushilevitz,
and Ostrovsky [IKOS07] provided a technique to create such proofs for arbi-
trary circuits, calledMulti-Party computation in theHead (MPCitH). It works by
creating a two-party protocol with a prover P who wants to convince the sec-
ond party, the verifier V, of his knowledge of a secret x, for which f(x) = 1. The
function f is a predicate that has either a unique solution or a difficult-to-find
solution and returns either Accept (f(x) = 1) or Reject (f(x) = 0). Furthermore,
f does not need to be deterministic, and thus a good witness corresponds to
x with Pr[f(x) = 1] = 1. Otherwise, f(x) will Rejectmost of the time but has a
small false positive probability p. We provide an overview of the probability dis-
tribution for a good and bad witness in Table 3.1. In the context of the MPCitH
paradigm, note that the verifier provides randomness for the evaluation func-
tion f . The prover must, therefore, commit to the simulated views before re-
ceiving the randomness from the verifier. From this, we know that an honest
prover will always convince the verifier, but in the case of a malicious prover P̃,
there is a success probability of cheating for a random selection ofN→1 parties
of 1

N . With the false positive probability p, we get a resulting soundness error
for the zero-knowledge protocol of:

ε = 1→
(
1→ 1

N

)
· (1→ p) =

1

N
+ p→ 1

N
· p (3.7)

In this context, the number of shares N and the number of parties n are com-
monly the same (N = n). The general mode of operation for the prover of the
MPCitH protocol is as follows.

1. Generate N shares !x" ← Share(x) of her secret x, which are then dis-
tributed among n imaginary parties.

#. Then simulate thedecision function f for all the nparties. Since theprover
simulates the parties, this step is performed ’in the head’.

##

#.’ Multi-Party in the Head Paradigm

Table 3.1: This table shows the probability distribution of the output of anMPC
protocol regarding a good and bad witness.

Accept Reject

good witness x 1 0
bad witness x p 1→ p

3. After that, the prover commits to each party’s view and sends the com-
mitment to the verifier, such that P cannot change the views later on. The
views contain the initial shares (state), the secret random tape (rt), which
is the private randomness used by each party, and the inbound and out-
bound communications (comm) between the parties.

4. Finally she sends the shares of the computed result !f(x)" to the verifier.

After the prover finishes her steps, the verifier will perform the following steps
to complete the protocol, including some involvement of the prover.

1. V chooses (n → 1) random parties and asks the prover to open her views,
which we denote as the first challenge L.

#. After receiving the opened views, the verifier checks whether the prover
performed theMPC protocol honestly by verifying that the opened views
result in the sent commitments.

3. Lastly, V agrees if the opened views are consistent and the shares of f(x)
reconstruct to 1.

By the definition of AddSS as in Section 3.), N → 1 shares are insufficient for
secret reconstruction. Therefore, this MPCitH protocol does not leak any infor-
mation about the secret x to the verifier. Moreover, the random selection of
n→ 1 parties implies a soundness error of 1

n because a malicious prover would
need to cheat on the hidden share to avoid getting caught. The reason for
this is that the verifier opens up all other parties and, thus, would notice ma-
nipulation in those shares. Thus, the soundness error boils down to correctly
guessing the hidden share before the commitment, which has a probability of
1
n . In order to further reduce the soundness error, one commonly executes the
MPCitH protocol multiple times (t times).
This protocol is visualized in Protocol 3.1.

#3

Preliminaries

Prover Verifier
Generate shares
!x"← Share(x)

Simulate decision function
Commit views of each party
com(statei, rti, commi), ∀i ≃ {0, . . . , N}
Calculate MPC function
!f(x)"← Share(f(x))

com, !f(x)"

Randomly sample
n→ 1 parties → L

L

Open views: open(com, D) (statei, rti, commi), ∀i ≃ L

Check opened views
Check reconstruction:
!f(x)" = 1

Protocol 3.1: This is a visualization of theMPCitH protocol described in this sec-
tion. It is an interactive protocol, which can be a three-round pro-
tocol, as shown here, or a five-round one. In this protocol, the
prover must show the verifier that she has a secret x without re-
vealing it to the verifier. This is done through additive secret shar-
ing, commitment, and a function f that has a unique solution.

#4

#.(Multi-Party Product Verification

3.9 Multi-Party Product Verification

Asmentioned in Section 3.), it is instrumental formanyMPC andMPCitH pro-
tocols to have the ability to check the correctness of the product of shares. For
this, we define a triple of sharings (!a", !b", !c") of three elements a, b, c ≃ F that
satisfy a · b = c. This triple is called a multiplication triple or Beaver triple be-
cause of its inventor, Donald Beaver. To verify the correctness of a multiplica-
tion triple, [[LN17], [BN1’]] proposed an MPC protocol that sacrifices another
triple to verify (!a", !b", !c"). Given the triple (!a", !b", !c") they use a random triple
(!x", !y", !z") to verify the correctness of both triple, meaning that a · b = c and
x · y = z by only revealing information of the random triple. To achieve this, the
protocol performs the following six steps:

1. The parties get a random value ϵ ≃ F

#. They calculate locally their share of !α" = ϵ · !a" + !x" and !β" = !b" + !y"

3. The parties broadcast their shares !α", !β" to obtain α and β

4. Each party calculates locally !v" = ϵ · !c"→ !z" + α · !y" + β · !x"→ α · β

(. They broadcast !v" such that every party has v

). The parties output Accept in case of v = 0 and Reject otherwise

We can argue the correctness of this protocol, such that each party will always
output Accept if the multiplication triples are correct because the following
holds:

v = ϵ · c→ z + α · y + β · x→ α · β

= ϵ · a · b→ x · y + (ϵ · a+ x) · y + (b+ y) · x→ (ϵ · a+ x) · (b+ y)

= 0.

We can define the soundness error of the multi-party product verification by
looking at the inverse case of at least one triplet being incorrect. This is equiva-
lent to randomly selecting v in F, such that v = 0 is true. The probability of this is
1/|F|, which is stated in Lemma) from Carsten Baum and Ariel Nof in [BN1’].

#(

Preliminaries

Lemma ’: [BN19]
If (!a", !b", !c") or (!x", !y", !z") is an incorrectmultiplication triple then the
parties outputAccept in theprotocol described abovewith a probability
at most 1/|F|.

This protocol creates considerable communication overhead in MPCitH pro-
tocols because the additional triple must be sent for every execution of the
protocol. This problem is tackled by [KZ##], reducing the communication cost
for z and v through batching. This means that instead of sending z, v in each
execution, one sends an instance of them for all executions. This, however, in-
creases the false positive probability. This means it is not an all-time solution,
but it should instead be considered carefully whether the increase in p is ac-
ceptable.

Batch Product Verification
Theprotocol batches the verificationof tmultiplication triples (!ai", !bi", !ci"),
by sacrificing a random dot-product tuple (!xi", !yi")i∈[d], !z". This tuple
must satisfy z = ↔x, y〉. We have the following protocol:

1. The parties get a random value ϵ ≃ Fd

#. They calculate locally their share of !α" = ϵ ◦ !a" + !x" and !β" =

!b" + !y"

3. They broadcast their shares !α", !β" to obtain α and β

4. Each party calculates locally !v" = →!z"+ ↔ϵ, !c"〉+ ↔α, !y"〉+ ↔β, !x"〉→
↔α,β〉

(. They broadcast !v" such that every party has v

). The parties output Accept in case of v = 0 and Reject otherwise

Similar to the non-batching multi-party product verification protocol, each
party will output Accept if the multiplication triples are correct. This can be

#)

#.1) Syndrom Decoding

seen by the following calculation:

v =→ z + ↔ϵ, c〉+ ↔α, y〉+ ↔β, x〉 → ↔α,β〉

=→ ↔x, y〉+ ↔ϵ, ↔a, b〉〉+ ↔α, y〉+ ↔β, x〉 → ↔α,β〉

=↔x, y〉+ ↔ϵ, ↔a, b〉〉+ ↔ϵa+ x, y〉+ ↔b+ y, x〉 → ↔ϵa+ x, b+ y〉

=→ ↔x, y〉+ (↔ϵ, a〉+ ↔ϵ, b〉) + (↔ϵ ◦ a, y〉+ ↔x, y〉) + (↔b, x〉+ ↔y, x〉)

→ (↔ϵ ◦ a, b〉+ ↔ϵ ◦ a, y〉+ ↔x, b〉+ ↔x, y〉)

=→ ↔x, y〉+ ↔ϵ, a〉+ ↔ϵ, b〉+ ↔ϵ ◦ a, y〉+ ↔x, y〉+ ↔b, x〉+ ↔y, x〉

→ ↔ϵ ◦ a, b〉 → ↔ϵ ◦ a, y〉 → ↔x, b〉 → ↔x, y〉

=(↔x, y〉 → ↔x, y〉) + ↔ϵ, a〉+ ↔ϵ, b〉+ ↔ϵ ◦ a, y〉+ ↔x, y〉+ ↔b, x〉

+ ↔y, x〉 → ↔ϵ ◦ a, b〉 → ↔ϵ ◦ a, y〉 → ↔x, b〉 → ↔x, y〉

=0 + ↔ϵ, a〉+ ↔ϵ, b〉+ 0 + 0 + ↔b, x〉+ ↔y, x〉 → ↔ϵ ◦ a, b〉 → 0→ ↔x, b〉 → ↔x, y〉

=↔ϵ, a〉+ ↔ϵ, b〉+ ↔b, x〉+ ↔y, x〉 → ↔ϵ ◦ a, b〉 → ↔x, b〉 → ↔x, y〉

=0.

We can now utilize the Lemma 7 from [KZ##] to define the probability that
each party outputsAccept with at least one incorrect multiplication triple as
1

|F|t .

Lemma (: [KZ22]
If at least oneof the twomultiplication triples ((!ai", !bi", !ci"), (!xi", !yi")i∈[t],
!z") is incorrect, then the parties output Accept with a probability of at
most 1

|F|t .

With commitments, additive secret sharing, and multi-party computation in
the Head. We will introduce the syndrome decoding problem, which forms
the fundamental problem used in the MPCitH protocol. After that, we show
the structure of the security proof used for our protocol in Section 7.3.

3.10 Syndrom Decoding

A common problem in code-based cryptographic systems is the Syndrome
decoding (SD) problem. This problem comes from the vector called syndrome
y, which refers to the product of a vector x and a parity-check matrix H. In

#7

Preliminaries

this context, the parity-check matrix H is a matrix that defines the code by
specifying which linear combinations of bits must add up to zero for x to be a
valid codeword, effectively capturing the error-detecting structure of the code
[VG#3]. This syndrome reveals information about the error pattern and helps
to determine the minimal set of errors needed to correct a received code-
word. When the syndrome is equivalent to 0, then x is a code word. In ad-
dition, x is bound by the hamming weight wt() and a security parameter w,
such that wt(x) ≤ w, as proposed by [BMVT78]. Here, w is bound by the Gilbert-
Varshamov radius. The Gilbert-Varshamov radius can be visualized as a sphere
defined for every code word. Thus, if we obtain a code that resides within a
sphere of a code word, it will correspond to this codeword with overwhelm-
ing probability. This allows for error correction because the syndrome does not
need to be equivalent to the codeword but rather resides within the sphere of
the codeword to be accepted. In order tomaintain the error correction charac-
teristic, no sphere can overlapwith another because otherwise, an input that is
within the intersection of two spheres cannot be uniquely assigned to a code-
word. Furthermore, a code can be uniquely assigned to a code word as long
as it resides within a sphere. However, if it resides outside, it belongs to one of
the surrounding codeword spheres and is no longer uniquely identifiable. The
problem can be defined more precisely as follows:

Syndrome Decoding

• Input: Parity-checkmatrix H← F(m−k)×m
q and a syndrome y ≃ Fm−k

q

• Challenge: Find a vector x ≃ Fm
q with wt(x) ≤ w and H · x = y

In this case, m describes the length of the solution x, and k is a security
parameter with m > k. Furthermore, H and x are drawn uniformly at
randomduring the challengegeneration, fromwhichonecalculates y =

H ·x. Looking at cryptographically relevant parameters for this problem,
then there exists only one x

′ such that wt(x′
) ≤ w and thus x

′
= x. In

addition w is bound by the Gilbert-Varshamov radius τrGV (m, k) which
is defined as:

w < τrGV (m, k)∈
w−1∑

j=0

(
m

j

)
· (q → 1)j < qm−k with q = |F|

#8

#.11 Zero-Knowledge Protocol for Syndrome Decoding

To solve the syndrome decoding problem, one can use an algorithm of the
following two algorithm families: the information set decoding (ISD) or the
generalized birthday algorithms (GBA) [BBC+1’, CTS1)]. These algorithms
determine how the security parameters of the syndrome decoding problem
are chosen, such that any algorithm in those families runs in a time greater
than 2λ to find an x that satisfies y = H · x. This is called λ-security.
In order to use the syndrome decoding as a signature scheme, we need to use
the MPCitH protocol based on this problem, which allows us to use the Fiat-
Shamir transformation to turn an MPCitH protocol into a signature scheme.
We describe syndrome decoding in the head paradigm in the next section.

3.11 Zero-Knowledge Protocol for Syndrome Decoding

The zero-knowledge protocol for the syndrome decoding (SD) problem was
first introduced by [FJR##] in #0##. We consider an instance of the SD prob-
lem (H, y) with a given solution x ≃ Fm

SD . Then, let FSD be the field in which the
instance is defined. After this, we can assume that H is in standard form with-
out the loss of generality. This means that the parity-check matrix H consists
of two matrices H

′ ≃ F(m−k)×m
SD and Im−k with H = (H

′ |Im−k), where Im−k is the
identity matrix of sizem→ k. Furthermore,m and k are selected as described in
the previous section. This allows us to rewrite the solution x as (xA,xB), where
xA contains the information for themultiplicationwith the parity-checkmatrix
H′ and xB the necessary information for the identify matrix. We can therefore
rewrite y as the linear relation:

y = H
′ · xA + xB (3.8)

Furthermore, because xA corresponds to H′ we can calculate xB from y and H

as xB = y→H ·xA. This also implies that we only need to send |xA| = (k · log(|FSD|)
bits to reveal the solution of the given instance (H, y). With this inmind, we can
now define the MPC protocol for the syndrome decoding problem before we
introduce the syndrome decoding in the head paradigm.

MPC protocol of the Syndrome Decoding Problem [FJR22]
Given the syndrome decoding problem instance described above, we
consider a field extensionFpoly ⊇ FSD such that |FSD| ≥ m. Lets recall that

#’

Preliminaries

MPC protocol of the Syndrome Decoding Problem [FJR22]
m is the length of the solution vector xwith x ≃ Fm

SD . We further denote
φ : Fpoly ↪→ FSD as the canoncial inclusion of FSD into Fpoly , meaning that
each element of FSD is treated as an element of Fpoly . Furthermore, we
define a bijection γ between {1, . . . , |Fpoly|} and Fpoly . This can be consid-
ered as having an index for each polynomial in Fpoly . However, because
of the bijection given i as an index, we get the corresponding polyno-
mial P via γ(i) or the corresponding index i given a polynomial P via
γ(P). To ease this notation, we will write γi instead of γ(i).
The MPC protocol must verify that the shares x are a valid solution by
checking y = H · x and wt(x) ≤ w. The input of this protocol is !xA"; thus,
we can build a correct sharing !x" using the Equation 3.8 and will have
y = H · x by construction. After that, we need to prove that wt(x) ≤ w

using the multi-party product verification. This can be done using the
following four polynomials where X is a variable over which the given
polynomials are constructed:

• The first polynomial S ≃ Fpoly[X] satisfies:

∀i ≃ [m],S(γi) = φ(xi)

and deg(S) ≤ m → 1. In other words, this polynomial contains the
values xi at its interpolation points γi because γi returns the poly-
nomial with index i. Evaluating S on this polynomial gives us an in-
terpolation point of S at point γi. This point is equal to φ(xi), which
is the value of x at position i mapped to the polynomial field Fpoly .
Thus, this polynomial S is unique and dependent on x such that it
represents x in Fpoly .

• The second polynomialQ ≃ Fpoly[X] is defined as:

Q(X) :=
∏

i∈e
(X → γi)

where e is a vector containing specific indices of x, with e ⊂ [m]

such that |e| = w and {i ≃ [m] : xi 0= 0} ⊂ e and thus implying
deg(Q) = w. The product is then calculated over the difference be-
tween the variableX and the polynomial corresponding to the po-

30

#.11 Zero-Knowledge Protocol for Syndrome Decoding

MPC protocol of the Syndrome Decoding Problem [FJR22]
sition at which the solution is xi = 1, thus creating the polynomial
Qwith its coefficients being themasked polynomials correspond-
ing to xi = 1. We can, therefore, say that the roots of Q(X) are the
polynomials that can be mapped to the indices of xwhere xi = 1.

• The last polynomial P ≃ Fpoly[X] is defined as:

P := (Q · S)/F with F(X) :=
∏

i=1

(X → γi).

Here F(X) is similar to Q(X), but instead of having its roots at xi =

1,F has its roots at every position of x because the product is done
over all indices corresponding to xi∀i ≃ [m].

After defining these four polynomials, we note a few additional impor-
tant characteristics:

• We know thatQ is amonic polynomial (polynomial where its lead-
ing coefficient is 1) of degree w and for every i ≃ [m], we have:

xi 0= 0→ i ≃ e→ Q(γi) = 0.

In otherwords, the roots ofQ correspond to the polynomial in Fpoly ,
which are connected to thenon-zeropositions ofx via thebijection
γ.

• The polynomial F dividesQ ·S. For this, it is important to note that
for every i ≃ [m], we have:

(Q · S)(γi) = 0

which is because of S(γi) 0= 0 → xi 0= 0 → Q(γi) = 0. In other words
at every position of x where x = 0 we know that S(γi) = 0 and at
every position of x with xi = 1 we know that Q(γi) = 0, thus the
product between them is 0. Therefore,P is well defined. Fprevents
the prover from defining P in a way that (Q · S)(γi) = 0 holds for
many positions in Fpoly which are outside of FSD and thus allowing
for a false positive acceptance of the verifier.

31

Preliminaries

MPC protocol of the Syndrome Decoding Problem [FJR22]
• The polynomial P is of at most degree deg(P) ≤ w → 1, ensuring it
acts as a lower-order corrective term in the equationQ·S→P·F = 0,
balancing the degrees on both sides. This degree constraint aligns
with the requirement that the Hamming weight wt(x) ≤ w, as P,
must offset the degrees introduced byQ and Fwhile keeping the
verification equation consistent.

In order for theproverP to prove that she knows a solutionxwithwt(x) ≤
w she needs to convince the verifier V that she has a polynomial Pwith
deg(P) ≤ w → 1 and another polynomial Q with deg(Q) = w such that
Q · S → P · F = 0. If S and F were built as described above, then V can
deduce that:

∀i ≃ [m],(Q · S)(γi) = P(γi) · F(γi) = 0

→ ∀i ≃ [m],Q(γi) = 0 or S(γi) = ψ(xi) = 0.

This deduction is crucial because it shows the verifier that for each i ≃
[m], eitherQ(γi) = 0 (indicating a zero in x) or S(γi) = ψ(xi) = 0 (indicating
a non-zero entry in x at a root of Q). This ensures that wt(x) ≤ w verifies
that the provers solution meets both the syndrome condition and the
weight limit, as the MPC protocol requires.

Using the earlier described polynomials and the deduction above, we can ex-
plain theMPCitHparadigmtoprove the following: Since the verifier knows that
Q has at most w many roots, she can conclude that ψ(xi) 0= 0 is in at most w
positions. Thus, she knows wt(x) ≤ w and that the shared secret x is valid.

3.11.1 Syndrome Decoding in the Head (SDitH)

To describe the SDCitH paradigm, wewill use anMPCprotocol, which on input
x,P andQ outputs Accept ifQ ·S→P ·F = 0 holds and Reject otherwise, except
with a small false positive probability. Each party’s input is a share of !xA", !Q"
and !P". For the sharing of x and P, we can use the additive secret sharing
described in Section 3.). This also works for the polynomialP because sharing
a polynomial is defined as sharing its coefficients, which can be stored in a
vector and shared in the samewayasx. RegardingQ, wewill additively share all

3#

#.11 Zero-Knowledge Protocol for Syndrome Decoding

of its coefficients except for the leadingone, which is publicly knownbecauseQ

is a monic polynomial, and thus, its leading coefficient is 1. This further allows
P to convince the verifier that deg(Q) = w, which is essential, as otherwise a
malicious prover P̃ could use the zero polynomial for Q, which would result in
an arbitrary solution forQ · S→P · F = 0.
Given these inputs, the protocol calculates S from xA and verifies Q · S = P · F
by evaluating both sides of the relation at t random points z1, . . . , zt. We are
following the Schwartz-Zippel lemma from Section 1 to know that the proba-
bility of observing Q(zj) · S(zj) = P(zj) · F(zj) for all j ≃ [t] is low. Furthermore,
this includes that the larger the set from which the evaluation points zj are
sampled, the smaller the false positive probability p. Because of that, we sam-
ple the evaluation points from a field extension Fpoints of the field Fpoly , allowing
us to sample more points for the evaluation and thus decreasing p. For this
verification, we must use the batch product verification protocol described in
Section 3.’ to prevent any information leakage of the secret x. In short, the
prover must first build t multiplication triples (!aj", !bj", !cj") for random ele-
ments aj , bj , cj ≃ Fpoints which satisfy aj · bj = cj for every j ≃ [t]. After that,
she includes these in the party’s inputs where each party obtains their corre-
sponding share of the random elements (!aj", !bj", !cj").

Syndrome Decoding in the Head (SDitH)
With all this in mind, we can now describe the MPCitH protocol for the
syndrome decoding.

1. Each party samples t evaluation points z1, . . . , zt ≃ Fpoints.

#. The parties compute locally !x" from !xA" using the Equation 3.8

3. After that the parties compute locally !S"(zj), !Q"(zj), as well as !(P ·
F)"(zj), ∀j ≃ [t]. We note here that !S(zj)" can be computed from
!x" by using the Lagrange interpolation:

!S"(zj) =
∑

i∈[m]

!x" ·
∏

l∈[m], '=i

zj → γl
γi → γl

.

This calculation does not require any interaction between the par-
ties. Furthermore we can simplify the computation of !(P · F)"(zj)
to !P"(tj) · F(zj) since F is publicly known.

33

Preliminaries

Syndrome Decoding in the Head (SDitH)
4. The parties now run the product verification of the multiplication

triples !S"(zj), !Q"(zj), !(P·F)"(zj)by sacrificing the triple (!aj", !bj", !cj")
for every j ≃ [t]. For this, they perform the following steps:

a) Each party samples a random ϵj ≃ Fpoints.

b) Every party locally calculates

!αj" = ϵj · !Q"(zj) + !aj" and !βj" = !S"(zj) + !bj".

c) After that they broadcast their shares (!αj", !βj") to the other
parties to obtain αj and βj .

d) With the obtained αj and βj they can locally compute:

!vj" = ϵj · !(P · F)"(zj)→ !cj" + α · !bj" + βj · !aj"→ αj · βj .

e) Finally each party broadcasts !vj" such that every party ob-
tains vj .

(. If each party obtains vj such that v = 0 then they return Accept
otherwise they return Reject.

In this context, it is essential to note that it is not required to specify the random
values zj and ϵj as it is part of the challenge provided by the verifier V in the
zero-knowledge setting.

The behavior of the SDitH protocol can be represented by a function F , which
takesx,Q,P and the tmultiplication triples and returnsprobabilisticallyAccept
or Reject. The probabilistic behavior of this function is due to the randomness
contained in the product verification protocol, more precisely in the random
evaluation points z1, . . . , zt and the random challenges ϵ1, . . . , ϵt.

The protocol will return Accept given a solution x that satisfies wt(x) ≤ w and
correctly computed polynomial P and Q with a probability of one. However,
whenever any protocol inputs do not follow the above protocol or x does not
satisfy wt(x) ≤ w, the protocol returns Reject with probability 1 → p, where p is
the false positive probability. Thus, the protocol follows the same output Table
3.1 as the MPCitH protocol described in Section 3.8.

Finally, we need to define the false positive probability p, which defines the

34

#.11 Zero-Knowledge Protocol for Syndrome Decoding

probability of theMPC protocol returning Accept even though it was executed
with a non-valid solution. For this, we denote the number of elements in Fpoints

as! := |Fpoints| anddefine a badwitness, representing a non-valid solution, as a
solution xwith wt(x) > w. Furthermore, the false positive probability is relevant
in the case of a falsely built polynomial P orQ, which leads toQ · S 0= P ·F. This
relation is evaluated at t points; thus, the probability that the relation holds for
i out of the t evaluations is:

Pr[Q(zj) · S(zj)→P · F(zj) = 0] =
maxl≤m+w−1

{(l
i

)
·
(!−l
t−i

)}

(!
t

) .

The maximum over l ≤ m+ w → 1 results from the maximum degree the poly-
nomialQ ·S→P ·F can have. This maximumdegree holds due to an extension
of the Schwartz-Zippel Lemma, as described in the Schwartz-Zippel variant #
Lemma #. The probability of obtaining Accept is

(1
!

)t−i. In other words, this
describes the probability of getting t → i false positives in the multiplication
triple verification. Combining these probabilities results in a global false posi-
tive probability p of:

p ≤
t∑

i=0

maxl≤m+w−1

{(l
i

)
·
(!−l
t−i

)}

(!
t

) ·
(
1

!

)t−i

. (3.’)

The false positive probability p plays an important role in describing the sound-
ness error ε. Let us first recall that the soundness error describes the prover
convincing the verifier without knowing the secret x. Given the soundness er-
ror of theMPCitHprotocolwithout the false positive event of 1

N , we need to add
the false positive event to the situation in which the prover did not cheat suc-
cessfully. We denote this situation by the counter probability 1→ 1

N . After that,
we can describe the soundness error as the counter probability of a malicious
prover not being able to guess the correct share (1→ 1

N) and the probability that
no false positive event occurs (1 → p). Thus, we have the following soundness
error:

ε = 1→
(
1→ 1

N

)
· (1→ p) =

1

N
+ p→ 1

N
· p. (3.10)

3(

Preliminaries

3.11.2 Communication Costs

Before we outline the proof for the soundness error, as well as the complete-
ness and zero-knowledge property, we will look at the protocol’s performance,
which can be determined by its communication cost. For this, we exclude the
communication costs of the challenges because their impact is comparably
small and becomes irrelevant when turning the protocol into a non-interactive
one, which is needed to obtain a signature scheme. Thus, we can split the com-
munication costs into the following three parts:

• Com := h, the hash of N commitments

• Resp1 := h
′ , the hash of N hashes of the output of the MPC protocol

• Resp2 := (statei, pi)i '=i∗ ,comi∗ , {!αj"i∗}, {!βj"i∗} for all j ≃ [t]

Here statei either consists of aPRGseedofλbits in caseof i 0= N or statei consists
of the following four parts:

• A PRG seed of λ bits,

• the share of the secret !xA"N of k · log2(|FSD|) bits.

• The polynomial shares !Q"N and !P"N , which are polynomials of degree w

for the proof of wt(x) ≤ w. They are each w · log(|Fpoly|) bits.

• And the shares {!cj"N}j∈[t], which are tpoints in Fpoints and are each |Fpoints|
bits. These {!cj"N}j∈[t] are part of the batch product verification.

In addition, comi∗ is a commitment of 2 ·λ bits and {!αj"i∗}, {!βj"i∗} for all j ≃ [t]

are elements of |Fpoints| bits. We can also describe the costs for the first two
parts of the communication, namely the commitmentCom and the first result
Resp1with 2·λbits eachbecause the hash functions return a 2·λ longbit string.
Thus, the resulting communications costs are:

3)

#.11 Zero-Knowledge Protocol for Syndrome Decoding

costscomm = 4 · λ Com and Res1
+ λ PRG seed

+ k · log2(|FSD|) !xA"
+ (2 · w) · log2(|Fpoly|) !Q"N , !P"N
+ 2 · t · log2(|FPoints|) {!αj"i∗ , !βj"i∗ , !cj"N}, ∀j ≃ [t]

+ 2 · λ comi∗

In order for us to achieve a soundness error of 2−λ, we can run the protocol τ
times to achieve εε ≤ 2−λ. This would increase the communication cost by a
factor of τ . However, we can save some cost by merging the hashes h and h

′

of all runs together and get a single instance of h and h
′ . The resulting cost

function is:

costscomm = 4 · λ+ τ · (λ+ k · log2(|FSD|) + (2 · w) · log2(|Fpoly|)

+ 2 · t · log2(|FPoints|) + 2 · λ) (3.11)

3.11.3 Security Proof

In this section, we will outline the security proof for the syndrome decoding
in the head protocol. This proof consists of three parts: completeness, honest-
verifier zero-knowledge, and soundness. For this, we will follow the security
proof in the paper [FJR##], which also provides detailed proofs of the zero-
knowledge and soundness property in Appendices E and F.

Completeness
The completeness proof follows the completeness definition of 3.4. The
proof of [FJR##] states that for any sampling of the random coins of the
prover P and the verifier V, a prover that genuinely performs every step
of the protocol will always convince the verifier and thus pass all checks
in the protocol.

37

Preliminaries

Honest-Verifier Zero-Knowledge
This proof follows thegeneral ideaof thehonest-verifier zero-knowledge
Definition3.4 to show that anhonest verifier does not gain any informa-
tion about the secret. For this, [FJR##] assumes that the used PRG be
(t, εPRG)-secure as well as the commitment scheme be (t, εCom)-hiding.
Thus, there exists an efficient simulator S , which outputs a (t, εPRG +

εCom)-secure transcript, that is indistinguishable fromthe transcript pro-
duced by the protocol. For this S is given a random challenge i

′ . After
that, they create a successful transcript of the SDitH protocol andmod-
ify it until they arrive at the transcript produced by S without adding
information about x. This shows that no information has been leaked.

Soundness
Similar to the first two proofs, this proof follows the idea of the sound-
ness Definition 3.4 and the proof of [FJR##]. Let there be an efficient
malicious prover P̃ that tries to convince the verifier V on input (H, y) to
know the secret x. Assuming she is successful with a probability of:

ε̃ := Pr[↔P̃,V, (〉H, y)→ 1] > ε (3.1#)

For a soundness error of:

ε = 1→
(
1→ 1

N

)
· (1→ p) =

1

N
+ p→ 1

N
· p (3.13)

Furthermore, p is defined as in Equation 3.’. Then there exists a prob-
abilistic extraction algorithm E , which has access to a rewindable black
box and either produces a witness x′ , such that Hx′

= y with wt(x
′
) ≤ w

or a commit collision. The expected number of calls E makes is based
on generating two distinct accepting transcripts, which depend on the
difference between ε̃ and ε. The average number of calls is then upper
bounded by:

4

ε̃→ ε ·
(
1→ ε̃ · 2 · ln(2)

ε̃→ ε

)
(3.14)

As long as themalicious prover has a probability of finding either a suit-
able x′ or a commit collision with a probability of less than ε in these
given number of calls, the protocol is considered to be secure.

38

#.11 Zero-Knowledge Protocol for Syndrome Decoding

Soundness
This soundness error can be modified to fit as close to 1

N as we want by
changing t and ! accordingly.

By detailing essential lemmata, cryptographic definitions, zero-knowledge
proofs, and multi-party computation fundamentals, we establish the theoret-
ical framework necessary for the used optimizations and the following com-
bination of them. We start with the three different optimizations, namely the
small integer secret sharing (Chapter 4), the hypercube structure (Chapter (),
and the One Tree to Rule them All technique (Chapter)) in the next three
chapters. After that, we will dive into how these can be combined to form our
protocol in Chapter 7. We start by describing Small Integer Secret Sharing.

3’

4 Small Integer Sharing

The first optimization for the syndrome decoding in the head protocol we con-
sider in this thesis is the Small Integer Sharing (SIS) or small integer secret
sharing technique introduced by [FMRV##]. This optimization aims to reduce
the communication costs of theMPCitHprotocol bymodifying the additive se-
cret sharing. They introduce the technique in connection with the subset sum
problem. We will, therefore, consider an instance of the subset sum problem
of (g, h) ≃ Zn

q × Zq . From this we have x ≃ {0, 1}n and

n∑

j=1

xj · gj = h mod q

They follow theMPCitH paradigm to build a zero-knowledge protocol to prove
the knowledge of a solution x for the sub-set sumproblem. For this, they build
anMPC protocol with an honest-but-curious party taking the shares of the se-
cret x as the input. This computation will only be successful in case of a valid
x. They utilize a modified version of the additive secret sharing (AddSS) de-
scribed in Section 3.). Let us recall that AddSS works by generating N → 1 ran-
dom shares and calculating the Nth share as the difference between the sum
of the N → 1 shares and the secret x. These shares can be summed to obtain
the secret. Instead they generate N random shares and calculate an auxiliary
share !x separately as:

⎧
⎨

⎩
!x"i

$←→ (Zq)n, ∀i ≃ [N]

!x ← x→
∑N

i=1!x"i mod q.
(4.1)

This sharing introduces an additional share. However, because the commu-
nications costs of a sharing in the MPCitH paradigm are determined by the
cost of sending the auxiliary value, here !x, they obtain a sharing cost of n ·
log2(q) bits.
To evaluate the still existing problem of their optimization, we give an example
of the communications costs for this sharing. Given n = 256 and q = 256, then

41

4 Small Integer Sharing

the sharing costs are 256·log2(256) = 216 bits= 8KB. To achieve a soundness error
of 2−128, they need to repeat theprotocol 16 times, and thus, the costs of sharing
the secret xwould already be 128KB,which is beyondpractical. To reduce these
communication costs, they sample the shares from a smaller number space,
reducing the communication cost of each share. We will describe this process
in more detail in the next section.

4.1 Sharing on Integers and Opening with Abort

This optimization further improves the communication costs of the secret
sharing of the previous section. Note that x is a binary vector (i.e. x ≃ {0, 1}n)
in the subset sum scenario, as well as in the SD environment. This allows us to
define the sharing over small integers instead of the binary space. Thus, this
sharing is the same as defined in the previous section. However, instead of
sampling each share !x"i over Zn

q , they introduce a new security parameter A,
which defines the upper bound of the number space from which the shares
can be sampled. This A can be relatively small and thus allows them to reduce
the communication costs, which we will show later in this Section 4.1.3. The
Small Integer Sharing is defined as follows:

Small Integer Sharing (SIS)
Given the secret x and a security parameter A, we can calculate the ad-
ditive sharing in the following manner:

⎧
⎨

⎩
!x"i

$←→ {0, . . . , A→ 1}n for all i ≃ [N]

!x ← x→
∑N

i=1!x"i
(4.#)

However, before we can examine the improvement, we need to address the
information leakage that comes with this sharing step. Note that !x is not in
{0, . . . , A→ 1}n, but rather in {0, . . . , N · (A→ 1)}n.
The information leak results from the differing distribution of !xj depending
onwhether xj = 0 or xj = 1. An illustration can be seen in the left distribution of
Figure 4.1. To address this problem, they introduce an abort technique, which
transforms theprobabilitymass functionof!xj back into anon-revealing state.
Let us first look at the exploit that results from this changing distribution. Re-
call that the verifier V will ask the prover P at the end of the protocol to open

4#

4.1 Sharing on Integers and Opening with Abort

Figure 4.1: This figure shows the probability mass function of !xj depending
onwhether xj = 0 or xj = 1 (on the left) and additionally of!xj with
the introduced abort technique (on the right). For both plots we
set N = 3 and A = 9 [FMRV##].

all but one view. To identify this unopened view, we will denote the index
of this view with i∗. Thus, the verifier will have access to the following views
{!x"i}i '=i∗ and !x.
Let us consider the simpler case of n = 1. We, thus, have x ≃ {0, 1} and !x" ≃
{0, . . . , A→1}, so a sharing through one integer. After opening all but one share,
the verifier can compute the following:

x→ !x"i∗ via !x+
∑

i '=i∗

!x"i

Note that!x is the difference between the sum of the shares and the secret x,
which in turn allows the verifier to compute the difference between x and the
unopened share !x"i∗ . For a shorter notation, wewill denote Y = x→!x"i∗ , which
represents the underlying random value over the uniform random sampling
of !x"i∗ . From this, a dishonest verifier can calculate the probability of Y being
either the highest (→A+ 1) or lowest value (0) of the sharing:

Pr(Y = →A+ 1) =

⎧
⎨

⎩

1
A if x = 0

0 if x = 1
and Pr(Y = 1) =

⎧
⎨

⎩
0 if x = 0

1
A if x = 1.

In turn, we have the probability for every other value is:

Pr[Y = y] =
1

A
for every y ≃ {→A+ 2, . . . , 0}.

43

4 Small Integer Sharing

For a better understanding of the information leakage, we will look at a small
example:

SIS probability example
Firstly, we will consider the case Y = →A + 1 with n = 1 as above, set
x = 1, and choose A = 9. If we now sample the single sharing of x as
!x" ≃ {0, . . . , A→ 1} = A→ 1 = 8 and calculate !x = x→ !x" = 1→ 8 = 7, we
can see that the probability of Y = →A + 1 = →9 + 1 = 8 is 0. The reason
for this is, that !x" can at most be 8 and thus we calculate Y = x → !x"i∗
which results in Y = 1→ 8 = 7 0= 8. For x = 0we can see that !x" must be
equal to A→ 1 = 8 in order for Y = →A+ 1 = 8, which has a probability of
1
A . This shows the verifier that xi must be 0.
Secondly, we will consider the same parameters as in the first case but
look at Y = 1. Again, we start with x = 1. In this case we can see that
in order for Y to equal 1 we would need to sample !x" = 0 to obtain
x→!x"i∗ = 1→0 = 1, which has a probability of 1

A . On the other hand, if we
have x = 0wewould need to sample !x" as→1 because of 0→ (→1) = 1, to
achieve Y = 1. However, this is impossible by definition (!x" ≃ {0, . . . , A→
1}). Thus, the verifier knows that xi = 1.

This example also gives a good intuition of the leaked information. More for-
mally, if the verifier observes x→!x"i∗ = →A+1 then she learns (x, !x"i∗) = (0,→A+

1). If she instead observes x → !x"i∗ = 1 then she knows that (x, !x"i∗) = (1, 0).
Thus, we can see that there are two scenarios inwhich the sharing reveals infor-
mation about the secret. We abort in those two cases to ensure that no infor-
mation is leaked. However, this must be done before revealing both {!x"i}i '=i∗

and!x, but after committing to the shares in order for the protocol to preserve
its soundness. This modification changes the distribution shown in Figure 4.1
(distribution on the right) and does not leak any information. Furthermore, the
abort probability does not leak any information about the secret x, as it is 1

A for
both cases. If we consider the general case of n ≥ 1, then the prover needs to
apply the abort technique to every coordinate of x, which can be shortened to
the following three options:

• If there exists a j ≃ [n] such that xj = 1 and the share !xj"i∗ = 0, then the
prover aborts.

44

4.1 Sharing on Integers and Opening with Abort

• If there exists a j ≃ [n] such that xj = 0 and the share !xj"i∗ = A → 1, then
the prover aborts.

• Otherwise, the prover continues.

In addition, we can give the probability to abort, which is also called the re-
jection rate. This rejection rate is the result of considering the counter prob-
ability of choosing any of the two cases above of (1 → 1

A) for all n positions
and the counter probability of having all n positions being an element that
does not lead to an abort

(
1→ (1→ 1

A)
n
)
. It can be approximated by n/A as

an upper bound if A is chosen large enough, because for large A we have
(1 → 1

A)
n ≈ e−n· 1A ≈ 1 → n

A → 1 → (1 → n
A) =

n
A . This further highlights the neces-

sity of choosing the security parameter A to be greater than n. More precisely
we asymptotically have A = θ(n) = θ(λ). This is an exponential improvement
compared to the original q = 2θ(λ). The rejection rate is therefore given by:

Pr[abort] = 1→
(
1→ 1

A

)n

≤ n

A
(4.3)

With this asymptotic improvement, wewill examine the communication costs
of the Small Integer Sharing of x. In the protocol, !x is the highest costing
vector of the sharing because it contains the difference between the secret
and the sum of the shares, which results in the highest value elements. Thus,
!x ≃ {→N · (A→1)+1, . . . , 0}, which results in a sending cost of n · log2(N · (A→1))

bits. However, in order for the prover to save communication cost, she can
makeuseof sendingx→!x"i∗ , which follows the relationx→!x"i∗ = !x+

∑
i '=i∗!x"i

and reveals the same amount of information to the verifier. This underlying
random value (x → !x"i∗) is uniformly distributed over {→A + 2, . . . , 0} and thus
takes n · log2(A → 1) bits to send. The verifier can also recover !x from x → !x"i∗
by computing

!x = (x→ !x"i∗)→
∑

i '=i∗

!x"i.

Another advantageof theSmall Integer Sharing is the independence from q re-
garding its communication costs. This becomes clear if we look at the additive
secret sharing, described in 4.1, which samples uniformly at random shares
from Zn

q . Thus, we have n elements, which can be as big as q. By using the SIS,
the largest element is upper bounded by A, which is much smaller than q; for
example, A = 216 compared to q = 2256. It is essential to note here that the se-

4(

4 Small Integer Sharing

lection of A depends on the trade-off between the communication costs and
the rejection rate. Considering the previous A of 216 and n = 256, we get a com-
munication cost of 0.5KB with a rejection rate of 0.0038. However, if we reduce
A to 28, we get a communication cost of 0.255KB, but the rejection rate spikes
up to 0.63, which is impractical.

It is important to note that the abort event does not impact the protocol’s
soundness. Recall that the soundness error upper bounds the probability that
someone who does not know the secret can complete the verifiers challenge.
The abort event does not increase this probability because a malicious prover
P̃ can abort as many times as she wants, claiming that the sharing would leak
information about the secret; this does not help to convince the verifier V of
her knowledge. For example, P̃ might sample a random party i

′ and gener-
ate a wrong share for i′ , which would appear correct. If V selects a different
party than i

′ , she might decide to abort, but this does not help her convince V

and, further, does not increase the soundness error. This is because the mali-
cious proverwould need to guess the correct party a priori, which has the same
probability as the verifier choosing to keep the wrong share hidden.

In order for us to use the SIS in the context of the subset sumproblem through
multi-party computation, we need to show that two properties are satisfied.
The first is that the shared secret can be translated to the relation:

n∑

j=1

xj · gj = s mod q

This can be translated to:

n∑

j=1

!xj" · gj = !s" mod q

For this we need to compute a sharing of s, which can be done via !s"i :=
∑n

j=1!xj"i ·gj mod q. Each party then commits these shares to the verifier. Sim-
ilarly to the sharing of x, the verifier can check whether !s"i was computed cor-
rectly and whether the relation

∑N
j=1!sj" = !s" mod q holds or not. The second

property shows that the sharing !x"needs to encode a binary vector, the secret
x. This is not inherently given, as the sharing is defined over {0, . . . , A → 1}, and
the correctness of the linear relation does not ensure that x is a binary vector.
Thus, we need to add another step to prove this property, which we will detail

4)

4.1 Sharing on Integers and Opening with Abort

in the next section.

4.1.1 Binarity Proof from Masking and Cut-and-Choose Strategy

This approach relies on themasking technique, which we combine with a cut-
and-choose strategy to prove that !x" encodes a binary vector. This works by
generating a random vector r ≃ {0, 1}n, which will be used instead of the origi-
nal secret x. Thus, we apply the sharing from Section 4.1 to the random vector
r and have the prover calculate and commit the masked secret x̃ := x ⊕ r ≃
{0, 1}n. Here ⊕ represents the XOR operator as stated in the notation Section
2.1. From this, we utilize the shares !r" of r as the input of the MPC protocol,
which allows us to be independent of the secret. Then, the parties can obtain
a share of the secret through themasked secret x̃ via the following linear rela-
tion in !r":

!x" = (1→ x̃) ◦ !r" + x̃ ◦ (0→ !r") (4.4)

The ◦ operator denotes the coordinate-wisemultiplication. In addition the ver-
ifier can deduce the auxiliary value!x from the shares !r" and the correspond-
ing !r as follows:

!x = (1→ x̃) ◦!r+ x̃ ◦ (1→!r) (4.()

By masking and making the sharing independent of the secret, we can apply
a cut-and-choose strategy to prove that !r" encodes a binary vector r, which
implies that x is a binary vector through x = x̃ ⊕ r. For the cut-and-choose
strategy the prover generates multiple instances of the data that they want to
prove is correct. After that, the verifier chooses a subset of these instances that
the prover opens. Then, the verifier checks these opened instances, and if they
match the given criteria, the verifier trusts that the unopened instances also
satisfy the criteria.
In order for the cut-and-choose strategy to work for SIS, the prover P generates
M many binary vectors rl, where l ≃ L with L being the corresponding chal-
lenge space. It calculates their corresponding shares !rl". These vectors are
similar to the random shares of the AddSS in Section 3.) in practice calculated
through a tree-based pseudorandom generator, which we will look at later in
Section). For now, we can consider this structure as an additional optimiza-
tion, which allows us to reduce the number of shares sent. Now, P commits
to these sharings, determines the masked vectors x̃l = x ⊕ rl, and commits
those as well. Hereupon, the verifier asks the prover to open all the sharings

47

4 Small Integer Sharing

but one and checks whether they correspond to a binary vector rl. It is essen-
tial to note that none of the x̃ vectors corresponding to any of the opened rl

are opened because the verifier would otherwise be able to recover the secret
x through the equations above. This strategy provides a soundness error of 1

M ,
which results in a combined soundness error for the entire protocol of

ε = max

{
1

M
,
1

N

}
. (4.))

The communication cost of the protocol with the binarity proof frommasking
and cut-and-choose strategy in combinationwith a rejection rate of 1→(1→ 1

A)
n

as:

COST = 4 · λ Com and Res1
+ λ · log2(M) cut-and-choose

+ n · log2(A→ 1) r→ !r"i∗

+ n x̃

+ λ · log2(N) Challenge L

+ 2 · λ comi∗

In order to give a better intuition for this protocol, we provide the following
example of the SIS and binarity proof from the masking and cut-and-choose
strategy.

SIS example
Assume the number of shares N = 2, the number of parties n = 2, and
the security parameter A = 9 for the number space of the Small Integer
Sharing and the secret x = (0, 0, 1) with a length of m = 3. We now
generate a random masking vector r ≃ {0, 1}m = (1, 0, 1) and the two
random shares for the mask !r"1 = (3, 5, 7), !r"2 = (2, 3, 4). After this, we

48

4.1 Sharing on Integers and Opening with Abort

SIS example
calculate the auxiliary vector for r via:

!r = r→
m∑

i=1

!r"

=

⎛

⎜⎝
1

0

1

⎞

⎟⎠→

⎛

⎜⎝

⎛

⎜⎝
3

5

7

⎞

⎟⎠+

⎛

⎜⎝
2

3

4

⎞

⎟⎠

⎞

⎟⎠

=

⎛

⎜⎝
1

0

1

⎞

⎟⎠→

⎛

⎜⎝
5

8

11

⎞

⎟⎠ =

⎛

⎜⎝
→4
→8
→10

⎞

⎟⎠

The prover P now sends x̃ = x ⊕ r to each party as well as the corre-
sponding share !r" and the auxiliary value !r. From these each party
can locally compute their share of x using Equation 4.4:

!x"1 = (1→ x̃) ◦ !r"1 + x̃ ◦ (0→ !r"1)

=

⎛

⎜⎝

⎛

⎜⎝
1

1

1

⎞

⎟⎠→

⎛

⎜⎝
1

0

0

⎞

⎟⎠

⎞

⎟⎠ ◦

⎛

⎜⎝
3

5

7

⎞

⎟⎠+

⎛

⎜⎝
1

0

0

⎞

⎟⎠ ◦

⎛

⎜⎝

⎛

⎜⎝
0

0

0

⎞

⎟⎠→

⎛

⎜⎝
3

5

7

⎞

⎟⎠

⎞

⎟⎠

=

⎛

⎜⎝
0

1

1

⎞

⎟⎠ ◦

⎛

⎜⎝
3

5

7

⎞

⎟⎠+

⎛

⎜⎝
1

0

0

⎞

⎟⎠ ◦

⎛

⎜⎝
→3
→5
→7

⎞

⎟⎠

=

⎛

⎜⎝
0

5

7

⎞

⎟⎠+

⎛

⎜⎝
→3
0

0

⎞

⎟⎠

=

⎛

⎜⎝
→3
5

7

⎞

⎟⎠

4’

4 Small Integer Sharing

SIS example

!x"2 = (1→ x̃) ◦ !r"2 + x̃ ◦ (0→ !r"2)

=

⎛

⎜⎝

⎛

⎜⎝
1

1

1

⎞

⎟⎠→

⎛

⎜⎝
1

0

0

⎞

⎟⎠

⎞

⎟⎠ ◦

⎛

⎜⎝
2

3

4

⎞

⎟⎠+

⎛

⎜⎝
1

0

0

⎞

⎟⎠ ◦

⎛

⎜⎝

⎛

⎜⎝
0

0

0

⎞

⎟⎠→

⎛

⎜⎝
2

3

4

⎞

⎟⎠

⎞

⎟⎠

=

⎛

⎜⎝
0

1

1

⎞

⎟⎠ ◦

⎛

⎜⎝
2

3

4

⎞

⎟⎠+

⎛

⎜⎝
1

0

0

⎞

⎟⎠ ◦

⎛

⎜⎝
→2
→3
→4

⎞

⎟⎠

=

⎛

⎜⎝
0

3

4

⎞

⎟⎠+

⎛

⎜⎝
→2
0

0

⎞

⎟⎠

=

⎛

⎜⎝
→2
3

4

⎞

⎟⎠

Furthermore we can locally calculate !x using Equation 4.(:

!x = (1→ x̃) ◦!r+ x̃ ◦ (1→!r)

=

⎛

⎜⎝

⎛

⎜⎝
1

1

1

⎞

⎟⎠→

⎛

⎜⎝
1

0

0

⎞

⎟⎠

⎞

⎟⎠ ◦

⎛

⎜⎝
→4
→8
→10

⎞

⎟⎠+

⎛

⎜⎝
1

0

0

⎞

⎟⎠ ◦

⎛

⎜⎝

⎛

⎜⎝
1

1

1

⎞

⎟⎠→

⎛

⎜⎝
→4
→8
→10

⎞

⎟⎠

⎞

⎟⎠

=

⎛

⎜⎝
0

1

1

⎞

⎟⎠ ◦

⎛

⎜⎝
→4
→8
→10

⎞

⎟⎠+

⎛

⎜⎝
1

0

0

⎞

⎟⎠ ◦

⎛

⎜⎝
5

9

11

⎞

⎟⎠

=

⎛

⎜⎝
0

→8
→10

⎞

⎟⎠+

⎛

⎜⎝
5

0

0

⎞

⎟⎠

=

⎛

⎜⎝
5

→8
→10

⎞

⎟⎠

After calculating the shares !x" and the corresponding auxiliary value
!x, we can calculate the secret x similarly to the additive secret sharing

(0

4.1 Sharing on Integers and Opening with Abort

SIS example
as follows:

x = !x+
m∑

i=1

!x"

=

⎛

⎜⎝
5

→8
→10

⎞

⎟⎠+

⎛

⎜⎝

⎛

⎜⎝
→3
5

7

⎞

⎟⎠+

⎛

⎜⎝
→2
3

4

⎞

⎟⎠

⎞

⎟⎠

=

⎛

⎜⎝
5

→8
→10

⎞

⎟⎠+

⎛

⎜⎝
→5
8

11

⎞

⎟⎠

=

⎛

⎜⎝
0

0

1

⎞

⎟⎠

4.1.2 Proof

In order for us to prove the correctness of Small Integer Sharing with masking
and cut-and-choose, we need to show that one can reconstruct the shares x

and the correspondingauxiliary value!x fromthe independent secret r and its
shares, as well as themasked secret x̃. The Equation 4.4 for this reconstruction
in the original paper [FMRV##] is faulty; thus, we give the correctness proof of
the reconstruction using Lemma 3.

(1

4 Small Integer Sharing

SIS correctness proof

x = !x+
m∑

i=1

!x"i

= (1→ x̃) ◦!r+
m∑

i=1

(1→ x̃) ◦ !r"i + x̃ ◦ (0→ !r"i)

= !r→ x̃ ◦!r+ x̃→ x̃ ◦!r+ (1→ x̃) ◦
m∑

i=1

!r"i + x̃ ◦
(
0→

m∑

i=1

!r"i

)

= !r→ 2 · (x̃ ◦!r) + x̃→ x̃ ◦!r+
m∑

i=1

!r"i → x̃
m∑

i=1

!r"i → x̃ ◦
m∑

i=1

!r"i

= !r→ 2 · (x̃ ◦!r) + x̃→ x̃ ◦!r+
m∑

i=1

!r"i → 2 ·
(
x̃ ◦

m∑

i=1

!r"i

)

We know that r = !r+
m∑

i=1

!r"i and thus get:

= r→ 2 · (x̃ ◦!r) + x̃→ 2

(
·x̃

m∑

i=1

!r"i

)

We can rewrite the shares as follows
m∑

i=1

!r"i = r→!r

= r→ 2 · (x̃ ◦!r) + x̃→ 2 · (x̃ ◦ (r→!r))

= r→ 2 · (x̃ ◦!r) + x̃→ 2 · (x̃ ◦ r) + 2 · (x̃ ◦!r)

= r+ x̃→ 2 · (x̃ ◦ r)

Using the Equation 3.3 from Lemma 3

= (r⊕ x̃) + 2 · (r ∧ x̃)→ 2 · (x̃ ◦ r)

= x+ 2 · (r ∧ x̃)→ 2 · (x̃ ◦ r)

Lastly we know that for binary vectors we have ◦ = ∧

= x+ 2 · (x̃ ◦ r)→ 2 · (x̃ ◦ r)

= x

4.1.3 Performance Analysis

Before we dive into the security proof of the SIS protocol, we will give a high-
level asymptotic complexity analysis. Given the security parameter λ, we will
show that the protocol achieves a communication cost of θ(λ2) and an asymp-

(#

4.2 Security Proof: Cut-and-Choose Strategy

totic computation time of θ(λ4).
Regarding the asymptotic communication cost of the binarity proof, Feneuil
et al. [FMRV##] show that they achieve costs of

costscomm = θ(λ log2(A) + λ log2(N))

given the assumption that M = N is optimal for the communication cost in
connection with the stated soundness error in Equation 4.). Furthermore,
assuming a low constant rejection rate, achieved by choosing A = θ(n · τ) =

θ(λ2

log2(N)) one can calculate the communication cost for τ iterations through:

costscomm = θ

(
λ2 · log2(A)

log2(N)
+ λ2

)
= θ

(
λ2

log2(N)
· log2(

λ2

log2(N)
) + λ2

)

From this equation with N = θ(λ), we get an asymptotic communication cost
of θ(λ2).
The asymptotic computation time for each repetition results from the com-
plexity of the multiplication between elements from Zq , which is the space of
the subset sum problem, and elements from the space of the small integer
problem A. The resulting computational costs are

costscomp = θ(N · n · log2(q) · log2(A)).

Thus, weget an asymptotic computational cost for one repetitionof θ(λ3·log2(λ)
and for τ repetition of θ(λ4). With this inmind, wewill continuewith the security
proof of the SIS protocol.
For a more detailed analysis of the communication and computational costs,
see Section 3.(of [FMRV##].

4.2 Security Proof: Cut-and-Choose Strategy

In this section, we give a high-level description of the security proof for the SIS
protocol with masking and cut-and-choose strategy. We refer the interested
reader to Section 4.# of [FMRV##].
Note that the described protocol of Section 4.1 with cut-and-choose can be
optimized by performing a global cut-and-choose strategy, which is needed
for the security proof. Instead of τ executions of the cut-and-choose strategy,
the prover generates M random vectors r with their related shares !r" and x̃.

(3

4 Small Integer Sharing

This allows the verifier to ask to open all but τ many r. This enables us to have τ
many trusted r, but in turn increases the soundness error to ε = max(1

M−ε ,
1
N).

Similar to the security proof of the syndrome decoding in Section 3.11.3,
we will state the protocol’s theorems for completeness, zero-knowledge, and
soundness.

Completeness
Given an honest prover P and a solution x for the subset sum instance
(g, h) ≃ Zn

q × Zq , then she convinces the verifier V with probability

(
1→ 1

A

)n·ε

Further, we need to denote the probability of the protocol aborting,
which follows the rejection rate in Equation 4.3. Thus, the abort proba-
bility for any of the τ iteration is

Pr[abort] = 1→
(
1→ 1

A

)n

(4.7)

Proof: Given any sampling of the random coins of P and V, if the proto-
col’s computation is executed honestly and there is no abort, Vwill pass
all the checks. Consequently, the completeness probability is 1 minus
the probability of an abort event given by Equation 4.7, which implies
the theorem statement.

Honest Verifier Zero-Knowledge
Assuming the PRGused in the protocol is (s, εPRG)-secure and the com-
mitment scheme com is (s, εcom)-hiding. There is an efficient simulator
S that, given random challenges J and L, produces a transcript that is
(s, τ ·εPRG+τεcom)-indistinguishable froman actual transcript of the pro-
tocol.
Proof: Firstly, we show the independence of the secret x and some val-
ues and events that occur in the transcript. For this, we argue that the
abort event is independent of the secret, i.e.

Pr[abort|x] = Pr[abort]

(4

4.2 Security Proof: Cut-and-Choose Strategy

Honest Verifier Zero-Knowledge
which ensures that the abortion of the protocol does not leak any in-
formation about the secret. Thus, we can denote the probability of an
abort without the secret as the probability of the abort event with the
secret Pr[abort]. This is detailed in Appendix E.1 of [FMRV##].
Secondly, we need to show that in case of no abort event, no additional
values leak information about the secret, namely the value x̃. We can
argue that because the sent coordinates rl → !rl"i∗ are uniformly sam-
pled from the distribution {→A + 2, . . . , 0} and yl = rl → !rl"i∗ , we know
that they do not leak any information in connection with the random
shares {!rl"i}i '=i∗ . Following this, we know that r does not leak any infor-
mation and is uniformly sampled over {0, 1}n. Thus, we know that x̃ is
independent of the secret x.
After this, we can create a simulator S that simulates the protocol with-
out knowing a correct solution x and has access to an oracle of a mali-
cious probabilistic polynomial time verifier Ṽ. This simulator then out-
puts a transcript that is independent of the transcript provided by a cor-
rect execution of the protocol of an honest prover.
For the detailed proof, see Appendix E.3 and F.3 of [FMRV##].

Soundness
Assuming that an efficient malicious prover P̃ on input (g, h) convinces
an honest verifier V on input (g, h)with a probability of

ε̃ = Pr[↔P̃(g, h),V(g, h)〉 = 1] > ε.

We can give the soundness error as:

ε = max
M−ε≤k≤M

{ (k
M−ε

)
(M
M−ε

)
·Nk−M+ε

}

where
(k
M−ε

)
·
(M
M−ε

)−1 is the probability of the malicious prover P̃ pass-
ing the cut-and-choose phase. The probability of passing the second
phase (the MPC protocol) is represented by 1

Nk−M+τ , which is the result
of having k →M many dishonest vectors for each of the τ executions. In
other words, it represents the probability that the honest verifier V does

((

4 Small Integer Sharing

Soundness
not pick the dishonest vectors in the opening phase of the protocol.
Suppose the dishonest vectors are the hidden vectors of the MPC pro-
tocol. In that case, there exists an efficient probabilistic extraction algo-
rithm E with rewindable black-box access to P̃ that produces a solution
x ≃ {0, 1}n with input h = (g,x) or a commitment collision. For this,
the extractor will make, on average, a certain number of calls to P̃. This
expected number arises because two distinct accepting transcripts are
required for successful extraction, meaning the required calls depend
on the difference between the malicious prover’s success probability ε̃
and the soundness threshold ε. The expected number of calls is given
by:

4

ε̃→ ε ·
(
1→ ε̃ · 8 ·M

ε̃→ ε

)

The idea behind the extraction of the solution x is that given three tran-
scripts of theprotocol execution, with specific conditions, we can extract
the solution using two extractors E1, E2. These two transcripts then need
to satisfy the following:

• They are run on the same shares, and their commitments

• The first two transcripts T1, T2 have different hidden shares in the
second challenge but have the same ones in the first challenge.

• The first two transcripts are success transcripts, meaning they
passed all checks of the honest verifier.

• The hidden share of the third transcript in the first challenge is dif-
ferent from the hidden share of T1 and T2 of their first challenge.

We assumeall the revealed shares between the transcripts aremutually
consistent, as we would otherwise have a hash collision. Furthermore,
transcript T1 and T2 differ in the second challenge but use the same
initial shares. Thus, the hidden share of one transcript is not hidden
in the other, and the extractor can access all shares and recover the
solution candidate. The third transcript differs in the first challenge and
allows the second extractor to recover the secret independent vector r,
following the same argumentation. This recovery is necessary to prove

()

4.2 Security Proof: Cut-and-Choose Strategy

Soundness
its binarity. Thus, we have shown that the three extractors can extract
the secret x and the corresponding trusted vector r.

In order to create these transcripts, we generate one successful tran-
script T1. After that, we roll back the transcript to the point after the first
commit, from where the second transcript is generated in a way that
differs in the index of the hidden share in the second challenge. With
these two transcripts, we again roll back to the point after the first com-
mit and generate transcripts until we find one that differs from the first
challenge to the first two. Thus, we have three transcripts that satisfy
the necessary characteristics for the extraction.

For a detailed proof, check Appendix F.4 of [FMRV##]. Note that this
proof is close to the proof of Appendix E in [FJR#1], which gives a more
detailed explanation of the same proof based on the syndrome decod-
ing problem.

(7

MPCitH with Hypercube Structure

The Small Integer Sharing optimization tackles the significant communication
cost problemof code-basedMPCitHprotocols. However, there is also the prob-
lemof computation costs, which can be improved by the hypercube optimiza-
tion introduced by Aguilar-Melchor et al. [AGH+##]. For this, we divideMPCitH
protocols into two different phases, the online and the offline phase, where the
offline phase encapsulates every computation, which is independent of the
communication between the prover and the verifier. The online phase corre-
sponds to the remaining calculations, which require communication between
the calculations. In this context, the hypercube structure is applied to the of-
fline phase. This optimization reduces computation costs without impacting
the soundness of the protocol. It works by rearranging the shares onto a hy-
percube and executing theMPCitH computations on various combinations of
the shares.

#.1 Rearranging shares into a Hypercube

In theMPCitHprotocols described in Section3.8, the share commitments con-
sist of seeds for a PRG either of the N → 1 first shares or, in the case of the
small integer sharing the N shares, while the final share is calculated as the
difference between the sum of shares and the secret. The prover then uses
these shares to simulate the MPC protocol for all n parties to produce the cor-
responding communications and transcripts. After that, the verifier asks the
prover to openN → 1 of the commitments and performs the protocol for those
n→ 1 parties again to check for consistency. Executing the protocol for each of
the n parties is the optimization point of the hypercube technique. Instead of
performing n executions, they rearrange the shares such that only log2(n) + 1

many executions are needed while preserving the soundness error by using
the same initial commitments.
Before we dive into the rearrangement, note that the additive secret shar-
ing used in the MPCitH computations works independently of the sampling
method of the individual shares as long as they add up to the secret of the

(’

5 MPCitH with Hypercube Structure

zero-knowledge proof. This allows us to re-express the number of parties of
the MPCitH protocol as n = ND

H parties, where NH is the number of shares or
parties per hypercube dimension and D is the number of hypercube dimen-
sions. The shares of each of the D dimensions add up to the original secret.
Thus, regardless of the additive secret sharing used, each dimension instance
will be correct. It is even independent of the underlying MPC protocol.

First, we describe the general hypercube creation. Then, we will give an ex-
ample of a two-dimensional hypercube, which is used to visualize the perfor-
mance increase. After that, we will show an example of a three-dimensional
hypercube to visualize the index generation, and finally, we give a practical ex-
ample to provide a better intuition.

Genral Hypercube
The general hypercube is a cube where each side is NH long and has a
dimensionality ofD. This allows it to containn = ND

H manyparties. These
n parties are called leaf-parties and have a list of indices where each el-
ement in the list defines the share it belongs to in the corresponding
dimension denoted by the position in the list. More formally the indices
are (i1, . . . , iD) ≃ [NH]D . For example, given (0, 1) with NH = 2, D = 2,
and N = 22 = 4, the first index tells us that the share will be used to
calculate the first share of the hypercube in the first dimension. The
parties corresponding to the shares of the hypercube are calledmain-
parties, and for each dimension k ≃ [D], there is one MPC run between
NH of these main-parties. To index a main-party, we use the index k, as
defined before, to determine the cube’s dimension and utilize an addi-
tional index j ≃ [NH] to index themain-party of a this dimension k. Thus,
eachmain-party is indexedby (k, j), wherewe select all leaf-party shares,
whichhave the value j at their index k in the index list (i1, . . . , iD) ≃ [NH]D .
These shares are then added together to form the sharing of the corre-
sponding main-party share. A resulting hypercube with its main-party
share indices can be seen in Figure (.1. In order to keep the amount of
revealed information the same as in the original MPC protocol, the ver-
ifier will ask to open all but one of the leaf-parties, instead of the main-
parties. This preserves the proof sizewhile reducing the number ofMPC
calculations.

)0

5.1 Rearranging shares into a Hypercube

Genral Hypercube

x1 axis

x2 axis

xD axis

(0, 0) (0, . . .) (0, NH)

(1, 0)

(1,. . .)

(1, NH)

(D, 0)

(D, . . .)

(D,NH)

Figure (.1: This figure shows a general hypercube and its main-party
indices, where NH represents the number of main-party
shares per dimension and D is the number of dimensions
in the cube. This hypercube consists of NH · D many main-
parties, which contain ND

H many leaf-parties.

With this view of the general construction of the hypercube architecture, we
will dive into a two-dimensional example to visualize the computational im-
provement and the calculations. Note that Aguilar-Melchor et al. [AGH+##]
recommend choosing NH = 2, which will give the highest optimization, as we
will see after the example in the performance analysis.

2D Hypercube
GivenNH = 2 andD = 2, we know that the hypercube can storeNH ·D =

2 · 2 = 4 many leaf parties, and thus we can assume a 4-party protocol
with n = N = 4, meaning we have 4 parties with one share per party.
For better readability, wewill denote the leaf-party shareswith ls1, ls2, ls3

and the corresponding auxiliary value with aux, where ls0 + ls1 + ls2 +

)1

5 MPCitH with Hypercube Structure

2D Hypercube
aux = x. Furthermore, we denote the main-party shares as m0 and m1

for the first dimension (x-axis) and n0, n1 for the second dimension (y-
axis). As previously mentioned, we assign each leaf-party share a list of
indices in [NH]D and the main-parties their corresponding index tuple
as follows:

ls0 ← (0, 0) m0 ← (0, 0)

ls1 ← (0, 1) m1 ← (0, 1)

ls2 ← (1, 0) n0 ← (1, 0)

aux← (1, 1) n1 ← (1, 1)

From this, we can deduce that the leaf-party shares of ls0 and ls1 are
used to calculate the first main-party share of m0. The first element (0)
of m0 ← (0, 0) indicates that we look at the first index of the ls indices
(denotes theposition in the leaf-party index list). The secondelement (0)
of this tupledenotes thatwechooseall leaf-shareswith the first element
equal to 0. Thus, we have the following main-party share calculations:

• m0 = ls0 + ls1

• m1 = ls2 + aux

• n0 = ls0 + ls2

• n1 = ls1 + aux

Figure(.# illustrates the arrangement of themain-party shares. In both
hypercube dimensions, the shares of the main parties add up to the
original secret x due to the associative and commutative nature of the
additive secret sharing.

)#

5.1 Rearranging shares into a Hypercube

2D Hypercube

n1 = ls1 + aux
n0 = ls0 + ls2 n1n0

ls0 ls1

ls2 aux

m0 = ls0 + ls1

m1 = ls2 + aux

Figure (.#: This figure adopted from [AGH+##] shows a simple two-
dimensional example of the hypercube architecture with
4 main-party shares (m0,m1, n0, n1) containing 4 leaf-party
shares (ls0, ls1, ls2, aux).

This example shows that using a two-dimensional hypercube does not pro-
vide a performance improvement, as we have to generate 4 states, commit to
4 states, and perform 4 MPC calculations for both the original leaf-party and
the main-party MPC execution. However, let us look at the common number
of leaf-parties of n = 256. By keeping NH = 2 and increasing the dimension D

to 8, we can incorporate n = 256 leaf-party shares while performing only 2MPC
executions per dimension. This leads to 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 = 16 MPC
calculation using the hypercube technique instead of one MPC execution per
leaf-party (256). This shows that the technique preserves the proof size, as the
openingdepends on the leaf-parties, while reducing the computation costs by
a factor greater than 10. It further indicates that the security can be noticeably
increased for the same computation cost.

An additional advantage of the hypercube structure is that each of the D ex-
ecutions relates to a specific aggregation of the same hypercube shares. As a
result, each dimension sums up to the same plain text in the MPC algorithm.
The prover can compute these plain-text values once; for example, by evalu-
ating the first NH parties, and for the remaining D → 1 runs, we can derive the
final share from the difference to the plain-text value. Thus, only NH → 1 par-
ties must be evaluated per run, resulting in 1 + (NH → 1) · D evaluations. One
can, therefore, bypass most of the D execution. For example, in the instance
of 256 parties, this optimization reduces the number of MPC computations to
2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 9, compared to 16 in the previous method and 256

in the original protocol.

This technique allows us to balance theMPC computation and the initial state

)3

5 MPCitH with Hypercube Structure

commitment, where the MPC computation aspect is commonly much more
expensive. We can increase the number of shares N (leaf-party shares) of the
original protocol until both phases reach comparable cost. This only works be-
cause increasing thenumber of leaf-party shares increases thenumber ofMPC
executions on the main-party shares logarithmically (ND

H). Thus, reaching pa-
rameters thatwere impossible in theoriginal protocol andachievingpreviously
unpractical security parameters is possible. In general, the more complex the
functionality, the larger the hypercube improvements. Thus, we close a larger
gap between the computation aspect and the initial costs.

For a better intuition of the improvement, we will provide the following practi-
cal example of a three-dimensional hypercube computation.

3D-Hypercube

Let us consider the secret x = (1, 0, 1)T of length m = 3, the number
of leaf-party shares N = 8 and the hypercube parameters NH = 2, D =

log2(8) = 3. At first, we calculate the shares using additive secret sharing
as described in Section 3.), which results in the following sharing:

ls0 =

⎛

⎜⎝
1

0

0

⎞

⎟⎠ ls4 =

⎛

⎜⎝
1

0

0

⎞

⎟⎠

ls1 =

⎛

⎜⎝
0

1

0

⎞

⎟⎠ ls5 =

⎛

⎜⎝
1

0

1

⎞

⎟⎠

ls2 =

⎛

⎜⎝
1

0

1

⎞

⎟⎠ ls6 =

⎛

⎜⎝
0

1

1

⎞

⎟⎠

ls3 =

⎛

⎜⎝
1

1

1

⎞

⎟⎠ aux =

⎛

⎜⎝
→4
→3
→3

⎞

⎟⎠

After that, we assign eachof these shares a list of indices. This list isD = 3

long, and each element is in {0, 1}. This represents themain-party share
it belongs to. BecauseNH = 2, we can start at (0, 0, 0) and increment the
list by counting in binary, which gives us these indices:

)4

5.1 Rearranging shares into a Hypercube

3D-Hypercube

ls0 ← (0, 0, 0) ls4 ← (1, 0, 0)

ls1 ← (0, 0, 1) ls5 ← (1, 0, 1)

ls2 ← (0, 1, 0) ls6 ← (1, 1, 0)

ls3 ← (0, 1, 1) aux← (1, 1, 1)

After this, we need to compute the indices for the main-parties, which
are of the form (k, j), where k ≃ [D] = {0, 1, 2} and j ≃ [N] = (0, 1). In
addition, we have NH · D = 6 many main-party shares, where mi, ni, pi

with i ≃ {0, 1} represent the main-party shares of the first, second and
third dimension respectively. Thus, we have:

m0 ← (0, 0) n0 ← (1, 0) p0 ← (2, 0)

m1 ← (0, 1) n1 ← (1, 1) p1 ← (2, 1)

These indices indicate which leaf-party shares are needed to calculate
the corresponding main-party share. As described earlier, the first ele-
ment (k) determines the position in the list of indices in the leaf-party
share index list, while the second element (j) defines the value it has to
match. This means that for m0 ← (0, 0), we look at the index list’s first
element (k = 0) and select every share for which the first element in its
index list is equal to j = 0. These are marked red.

ls0 ← (0, 0, 0) ls4 ← (1, 0, 0)

ls1 ← (0, 0, 1) ls5 ← (1, 0, 1)

ls2 ← (0, 1, 0) ls6 ← (1, 1, 0)

ls3 ← (0, 1, 1) aux← (1, 1, 1)

)(

5 MPCitH with Hypercube Structure

3D-Hypercube
Following this construction, we get the main-party shares as:

m0 = ls0 + ls1 + ls2 + ls3

=

⎛

⎜⎝
1

0

0

⎞

⎟⎠+

⎛

⎜⎝
0

1

0

⎞

⎟⎠+

⎛

⎜⎝
1

0

1

⎞

⎟⎠+

⎛

⎜⎝
1

1

1

⎞

⎟⎠ =

⎛

⎜⎝
3

2

2

⎞

⎟⎠

m1 = ls4 + ls5 + ls6 + aux

=

⎛

⎜⎝
1

0

0

⎞

⎟⎠+

⎛

⎜⎝
1

0

1

⎞

⎟⎠+

⎛

⎜⎝
0

1

1

⎞

⎟⎠+

⎛

⎜⎝
→4
→3
→3

⎞

⎟⎠ =

⎛

⎜⎝
→2
→2
→1

⎞

⎟⎠

n0 = ls0 + ls1 + ls4 + ls5

=

⎛

⎜⎝
1

0

0

⎞

⎟⎠+

⎛

⎜⎝
0

1

0

⎞

⎟⎠+

⎛

⎜⎝
1

0

0

⎞

⎟⎠+

⎛

⎜⎝
1

0

1

⎞

⎟⎠ =

⎛

⎜⎝
3

1

1

⎞

⎟⎠

n1 = ls2 + ls3 + ls6 + aux

=

⎛

⎜⎝
1

0

1

⎞

⎟⎠+

⎛

⎜⎝
1

1

1

⎞

⎟⎠+

⎛

⎜⎝
0

1

1

⎞

⎟⎠+

⎛

⎜⎝
→4
→3
→3

⎞

⎟⎠ =

⎛

⎜⎝
→2
→1
0

⎞

⎟⎠

p0 = ls0 + ls2 + ls4 + ls6

=

⎛

⎜⎝
1

0

0

⎞

⎟⎠+

⎛

⎜⎝
1

0

1

⎞

⎟⎠+

⎛

⎜⎝
1

0

0

⎞

⎟⎠+

⎛

⎜⎝
0

1

1

⎞

⎟⎠ =

⎛

⎜⎝
3

1

2

⎞

⎟⎠

p1 = ls1 + ls3 + ls5 + aux

=

⎛

⎜⎝
0

1

0

⎞

⎟⎠+

⎛

⎜⎝
1

1

1

⎞

⎟⎠+

⎛

⎜⎝
1

0

1

⎞

⎟⎠+

⎛

⎜⎝
→4
→3
→3

⎞

⎟⎠ =

⎛

⎜⎝
→2
→1
→1

⎞

⎟⎠

If we sum these main-party shares up, we will get the original secret
x = (1, 0, 1)T , which we can see in the subsequent computation.

))

5.1 Rearranging shares into a Hypercube

3D-Hypercube

x
′
= m0 +m1 + n0 + n1 + p0 + p1

=

⎛

⎜⎝
3

2

2

⎞

⎟⎠+

⎛

⎜⎝
→2
→2
→1

⎞

⎟⎠+

⎛

⎜⎝
3

1

1

⎞

⎟⎠+

⎛

⎜⎝
→2
→1
0

⎞

⎟⎠+

⎛

⎜⎝
3

1

2

⎞

⎟⎠+

⎛

⎜⎝
→2
→1
→1

⎞

⎟⎠

=

⎛

⎜⎝
1

0

1

⎞

⎟⎠

Therefore, we can add the hypercube sharings exactly after the addi-
tive secret sharings and perform the MPC protocol as before without
changing the functionality itself.

With this mode of operation of the hypercube structure in mind, we will ana-
lyze the performance of the SDitH protocol with the hypercube structure.

#.1.1 Performance Analysis

In this section, we provide the performance analysis of the hypercube proto-
col. This analysis is based on the syndrome decoding problem, where x ≃ Fm

SD

is the secret with a hamming weight of wt(x) ≤ w. For this, we analyze the
zero-knowledge protocol, which follows the same operation path as the origi-
nal SDitH protocol but uses the hypercube scheme described in the previous
sections. It is important tonote that similar to the original protocol, a fewpoints
of theprotocol are ignored for the analysis, namely the challenges of the verifier
because they do not impact the performance significantly. Thus, the commu-
nication cost is calculated via:

• Com := h of the ND
H commitments

• Resp1 := h
′ of the D hashes output from the MPC simulation

• Resp2 := (statei1,...,iD , pi1,...,iD)∀(i1, . . . , iD) 0= (i∗1, . . . , i
∗
D),comi∗1,...,i

∗
D
,

!α"i∗1,...,i∗D , !β"i∗1,...,i∗D

Wecanconsider all but the final leaf-party share (i′ ≃ ND
H)with (i

′
= (i1, . . . , iD) ≃

{1, . . . , ND
H }) of the hypercube, where each state of these leafs has a cost of the

)7

5 MPCitH with Hypercube Structure

size of the seed of λ bits. For the final leaf, in addition to the seed seedND
H
, we

need to take into account the auxiliary value. This auxiliary value consists of
three parts, first the plain-text share !xA"ND

H
, second the shares for the polyno-

mial sharing, namely the two polynomials of degree w → 1 : !Q"ND
H
and !P"ND

H

and third the share !c"ND
H
for the t ≃ Fpoints.

Note that the pseudorandom generator used in the hypercube protocol fol-
lows a tree structure similar to the one used in the small integer sharing paper.
We will give a more detailed explanation of this technique in Section). This
technique affects the communication cost, as the parties are affected by the
hypercube optimization, and thus, the component D is the number of seeds
and commitment-randomness. Because of the TreePRG structure, we can re-
duce these random values to a sibling path in the tree of length D that con-
nects (statei∗1,...,i∗D , pi∗1,...,i∗D) and the root. This path has a communication cost of
D · λ · log2(N) bits. The comi∗1,...,i

∗
D
has the same costs as in SIS with 2 · λ and

|Fpoints| for all t shares !α"i∗1,...,i∗D , !β"i∗1,...,i∗D .Combining all of these, we get:

COST = 4 · λ Com and Res1
+D · λ · log2(N) PRG seed

+ k · log2(|FSD|) !xA"ND
H

+ (2 · w) · log2(|Fpoly|) !Q"ND
H
, !P"ND

H

+ 2 · t · log2(|FPoints|) !α"i∗1,...,i∗D , !β"i∗1,...,i∗D
+ 2 · λ comi∗1,...,i

∗
D

By performing the protocol τ times in parallel after transforming it into a non-
interactive protocol, Aguilar-Melchor et al. [AGH+##] follow the common con-
struction to achieve a soundness error of 2−λ. Similarly to the optimization in
Section 4.1.3, we can further reduce the communication cost by merging h

and h
′ of all τ runs. This results in a total communication cost of:

COST = 4 · λ+ τ · (D · λ · log2(N) + k · log2(|FSD|)

+ (2 · w) · log2(|Fpoly|) + 2 · t · log2(|FPoints|) + 2 · λ) ((.1)

)8

5.1 Rearranging shares into a Hypercube

The resulting soundness error, where p is the false positive rate, is

ε = (p+ (1→ p) · 1

ND
H

)ε .

Finally, we will go over the security proof of the SDitH protocol with the hyper-
cube structure in the next section.

#.1.2 Security Proof

Let us give a high-level description of the security proof for the hypercube pro-
tocol for the syndrome decoding problem. This description follows the high-
level description of the SDitH security proof in Section3.11.3, as they are based
on the same problem and therefore have a similar underlying hardness as-
sumptions. In addition, we will denote a general prover as a prover who does
not necessarily know the secret but reads and produces the same types of
messages as an honest proverwithout needing to follow the protocol. We start
by showing that an honest prover will be accepted with certainty if she knows
the secret and, in turn, show that amalicious prover without the knowledge of
the secretwill only beacceptedby the verifierwith aprobability of ε ≈ 1

ND
H
(com-

pleteness and false acceptance rate). After that, we describe the proof that the
protocol is a zero-knowledge proof by showing that the protocol can be simu-
lated without the knowledge of the secret. This closely follows the proof in the
original syndrome that decodes the zero-knowledge proof in Section 3.11.3
and the small integer that shares ZK in Section 4.#.

(Perfect) Completeness
Givenanhonest proverPwith knowledgeof the secretxwho follows the
protocol without any deviation, P will be accepted by a verifier V with a
probability of 1.
Proof: This follows by design of the protocol. A prover that follows the
protocol honestly will acquire computations for any choice of random-
ness, whichwill pass all of the verification checks of the verifier V by con-
struction.

Before we continue with the zero-knowledge proof sketch, we will look at the
protocol’s false positive rate p. We need to show that it relates to the false pos-
itive probability 3.’ of the original SDitH protocol.

)’

5 MPCitH with Hypercube Structure

False Acceptance Rate

For this, we again define amalicious prover P̃ as a prover without knowl-
edge of the secret x, who intends to create transcripts of the protocol
that will be falsely accepted by the verifier. The malicious prover com-
mits to abadwitnesswithS·Q 0= P·F and iswithprobability less or equal
ε = p+ 1−p

ND
H
accepted by the verifier. By creating these polynomials with-

out knowing the secret, she has a probability of (1→ p) that at least one
of the challenge points is non-zero, as the verifier’s random challenge
points are unlikely to align with the false polynomials at every position,
revealing the inconsistency and leading to rejection by the verifier. She
creates thesepolynomials by following the techniqueof Section3.’ and
communicates them using the shares of α,β, v. Without loss of gener-
ality, we can assume that the prover cheats on one of the shares of α
in one of the D independent SDitH runs, as cheating on either β or v
would have the same probability. However, there are NH many main-
party shares in this SDitH run, giving her a success chance of 1

NH
. In

addition, each main party consists of ND−1
H leaf-party shares, where all

but one will be opened. Thus, the prover cannot cheat on more than
one leaf-party share as the additional cheated share will be opened and
identified. Each leaf-party share belongs to a singlemain-party share of
each of the SDitH runs, which forces the prover to also cheat on any of
the !α" shares used in the other runs. The prover must, therefore, cheat
on the share !α" of a single leaf-party share cs.
The only way this is possible is that the uniformly random challenge of
the verifier selects its hidden share i∗ to be precisely the cheated leaf-
party share cs. The probability of this happening is 1

ND
H
, which is equiv-

alent to the probability of cheating in the original SDitH protocol of 1
N .

In a non-false positive scenario, the prover P̃ has, therefore, a chance of
cheating of≤ 1

ND
H
. This bounds the probability of a successfully cheating

prover for the entire protocol without the knowledge of the secret x to
be

ε = p+
1→ p

ND
H

((.#)

Wecontinuewith the securityproof and showthehonest-verifier zero-knowledge

70

5.1 Rearranging shares into a Hypercube

proof.

Honest-Verifier Zero-Knowledge (HVZK)
Assuming theprotocol’spseudorandomgenerator (PRG) and the com-
mitmentCom are indistinguishable from the uniform randomdistribu-
tion, then the protocol is HVZK.
Proof: The proof follows the original honest-verifier zero-knowledge
proof of the SDitH [FJR##]. Given a (t, εPRG)-secure PRG and a (t, εCom)-
hiding commitment scheme, there exists an efficient simulator S that
produces a (t, εPRG + εCom)-secure transcript without the knowledge
of the secret x. This transcript is indistinguishable from the transcript
produced by an honest protocol execution. This shows that a malicious
verifier would not gain any information about the secret. The general
mode of operation in this proof is to consider a simulator S that pro-
duces the transcript responses (Com,CH1,Resp1,CH2,Resp2). After
that, we create a so-called true-transcript, which is an execution of the
protocol with an honest prover and verifier and the knowledge of the
secret x. This creates a correct transcript. Using this transcript, we alter
the outputs section-by-section until we arrive at the simulator S and
argue why the distribution did not change after each alteration. Thus,
we prove that we can get from a true-transcript to a simulated one,
which is only possible if no information of the secret is included in the
transcript.

Soundness
Similar to the completeness and the HVZK proof, the proof of sound-
ness follows the proofs of the original SDitH protocol. We assume an
efficient prover P̃ with knowledge of only (H, y) who can convince an
honest verifier V with a probability of

ε̃ = Pr[↔P̃,V〉 → 1] > ε = (p+
1→ p

ND
H

). ((.3)

Assuming the false positive rate p is bounded by Equation 3.’, there ex-
ists an extraction algorithm E , which either produces a good witness x′

such that H · x′ = y and wt(x′) ≤ w, or a commitment collision, by mak-

71

5 MPCitH with Hypercube Structure

Soundness
ing an average number of calls to P̃. This average number of calls arises
because two distinct accepting transcripts are required for successful
extraction; thus, the number of calls depends on the gap between the
malicious prover’s success probability ε̃ and the soundness threshold ε.
The expected number of calls is then given by:

4

ε̃→ ε ·
(
2 · ε̃ · ln(2)
ε̃→ ε

)
((.4)

In the case of a prover cheatingwith a probability of p ≤ ε, this counts as
regular cheating and is not an issue for this proof or the security of the
protocol in general.
Proof: The proof idea follows the proof of the original syndrome in the
head soundness proof from [FJR##] closely. The only difference is re-
lated to the secret extraction, more precisely, the argument of why we
can extract the secret. Let us recall that we run the SDitH protocol in
D parallel executions, where each execution state is secret shared, as
defined earlier. These shares are arranged in the hypercube geometry;
thus, each secret share is used in D executions of the protocol. More-
over, the prover commits to these shares in her first message. We now
need to explain the extraction of the secret x.
The extraction operates similarly to the original extraction algorithm,
where one can extract the secret if two accepting transcripts are given.
These transcripts use the same initial commitments but differ in their
second challenge. This means that both transcripts use the same se-
cret shares but do not open the same shares in the second challenge.
This, in turn, means that all shares are opened over the two transcripts,
and thus, we can calculate the secret. This technique assumes that the
used commitment scheme is binding. In the following paragraph, we
will argue that this extraction is sufficient.
First, this argument holds for the original SDitH, but due to the differ-
ent commitments of the hypercube structure, it does not automatically
hold for this technique. However, by rephrasing the extraction condi-
tion, we can utilize the original proof for the hypercube. Here, we argue
that the extraction is possible if we have access to all opened shares and

7#

5.1 Rearranging shares into a Hypercube

Soundness
their communication as long as each share is verified in at least one of
the two accepting transcripts.
Because all but one share is opened in the first transcript, we know that
all but this hidden share and their communication are verified in this
transcript. The second transcript differs only in the second challenge,
where all but one share and their communication is opened and veri-
fied. This means that the hidden share of the first transcript belongs to
a differentmain party in the second transcript, in which thismain-party
share must be opened. Thus, the hidden share of the first transcript is
verified using the second transcript. This also holds for the hidden share
of the second transcript. Following the extraction argument of [FJR##],
we now have access to all leaf-party shares, which have all been verified.
Consequently, we can reconstruct the secret. After this, we only need to
show that the extracted secret is a good witness, meaning that it solves
the equation H · x = y with wt(x) ≤ w. This precisely follows the SDitH
proof.

We refer the reader to Section 3.((Security Proof) in [AGH+##] for the detailed
proofs.
This concludes the soundness and security analysis for the hypercube opti-
mization in MPCitH protocols. By efficiently structuring computation through
the hypercubemodel, Aguilar-Melchor et al. [AGH+##] achieve substantial im-
provements in both performance and scalability without compromising secu-
rity. With this foundation, wenow turn to the role of tree-basedpseudorandom
generators, which further optimize the SDitH protocol regarding its commu-
nication costs.

73

’ Tree-based Pseudorandom Number Generator

In this section, wewill describe the tree-based pseudorandomnumber gener-
ation optimization, which reduces the communication costs of secret sharing.
We start by looking at Goldreich, Goldwasser Micali (GGM) tree-based pseu-
dorandom number generators. After that, we present the One Tree to Rule
them All structure, which optimizes the communication of secret shares over
τ executions.

GGM Tree-based Pseudorandom Number Generator
The afford mentioned tree based pseudorandom number generator
(treePRG) is, as the name suggests, a pseudorandom number gen-
erator (PRG) that utilizes a tree structure to derive its pseudorandom
values. These structures are commonly based on the Goldreich, Gold-
wasser, Micali (GGM) [GGM8)] trees and often fall under this name. We
initialize the PRGwith a random seed of length d, which will be used for
the root tr of the tree. After that, the length-doublingmethod creates a
new random number tl of length 2 · d. This technique can, for example,
be a hash function th, with th : Zd → Z2·d, such that it takes a number
of length d as input and returns a number of length 2 · d. After that, tl
is split in half, where one half is assigned to the root’s left child and the
other to the right child. This process is repeated until nomore nodes are
needed, creating a binary tree inwhich each node represents a random
number.

The advantage of such a tree is that depending on the security needed, only
the root or a few nodes must be communicated so that the other side can
reconstruct the entire tree, reducing communication costs significantly. In
the case of the MPCitH protocols, this allows the prover to send log2(N) nodes,
where N is the number of shares. It is important to note that the root cannot
simply be shared, as this would allow the verifier to reconstruct all shares. Thus,
the provermust send all nodes needed to construct the tree without revealing
the hidden share path, commonly referred to as a sibling path. For this, the

7(

6 Tree-based Pseudorandom Number Generator

prover only uses the tree leafs as random values for the party shares because
all but one share commonly needs to be opened, which would not be possible
if non-leaf nodes were used. In order to provide a better intuition of this con-
struction in theMPCitH context, we will give an example of using a TreePRG in
the context of an MPCitH protocol.

TreePRG for MPCitH
Let us consider an instance of an MPCitH run, with n = 9 parties and
N = 9 shares, utilizing the additive secret sharing from Section 3.).
Therefore, we need N → 1 = 8 uniformly random values for the shar-
ing and the auxiliary value, which will be used for the 9th share. These
8 shares can be generated using the treePRG technique as described
in Definition) until the tree has 8 leafs, one for each share. In this case,
we utilize every leaf of the tree below (Figure).1) as a random share
and commit to it during the initial communication. After receiving the
challenge from the verifier, we know that all but the 14th node (hidden
share) needs to be opened. In order to prevent the opening of the hid-
den share, we can look at the sibling path marked in red. This path
tells us that the nodes 1, 3, 7 and 14 cannot be revealed to the verifier
as revealing any of them would allow the verifier to reconstruct the 14

node by following the construction described earlier. However, every
parent node that is not part of this path can be used, resulting in send-
ing nodes 2, 6 and 15. In contrast to the original sharing, which would
require the prover to send all leaf nodes (8→ 15), she only needs to send
log2(N) = log2(9) = 3 nodes.

7)

6.1 One Tree to Rule them All

TreePRG for MPCitH

1

#

4

8 ’

(

10 11

3

)

1# 13

7

14 1(

Figure).1: This figure shows an example treePRG of 15 total nodes,
where nodes 8 to 15 can be used for the additive or small in-
teger secret sharing. The red path (1, 3, 7, 14) represents the
nodes that need tobehidden fromthe verifier toprevent the
verifier from obtaining the hidden node 14. Thus, the green
nodes (2, 6, 15) represent the nodes that are sent to the veri-
fier and areneeded to reconstruct the treewithout revealing
the hidden nodes.

’.1 One Tree to Rule them All

We introduce an optimization of the treePRG for a single run of an MPCitH in-
stance in mind; [BBM+#4] describes a technique to utilize the treePRG struc-
ture to reduce the communication for all τ executions of the MPCitH protocol.
This technique introduces a structure called theOne Tree to Rule themAll, and
we shortened the name to OneTree.

OneTree
The OneTree combines all τ treePRGs into a single GGM tree. They ar-
gue that opening all but τ leafs of the OneTree reduces, on average, the
number of nodes thatmust be revealed to the verifier because some of
the original sibling paths of the τ treePRGsmerge relatively close to the
leafs in the OneTree.

77

6 Tree-based Pseudorandom Number Generator

OneTree
For this merging to occur, they map the entries of the single trees into
the big tree in an interleaving fashion. This can be seen in Figure).3.
The first τ leafs of the OneTree correspond to the first element of the
τ commitments. This means that the first share of each MPCitH run is
used for the tree’s first τ leafs. Then, the second share of the τ commits
corresponds to the next τ leafs of the OneTree. Following this construc-
tion, all leafs/shares of the τ GGM trees aremapped to theOneTree. Sim-
ply merging all GGM trees into a single one, as visualized in Figure).#,
is detrimental to the optimization because none of the sibling paths of
the hidden shares would merge close to a leaf of the OneTree. Thus,
there would be no reduction in the number of nodes that need to be
sent to the verifier. This can also be seen in Figure).#.

Figure).#: In this figure, we can see τ GGM trees, which have been
combined into a single tree without using the interleaving
combination described in Section).1. Thus, it shows that
we need to reveal 8 nodes of the tree (highest green nodes)
in order to open all requested shares for the verifier. The ✕
marks the hidden nodes for each of the τ TreePRGs. This fig-
ure was taken from [BB#4].

78

6.1 One Tree to Rule them All

OneTree

Figure).3: This figure shows an example of the improvements of the
OneTree structure by interleaving the nodes of the τ TreeP-
RGs, such that the first τ nodes of the OneTree correspond
to the first commitment of each of the τ MPCitH executions
corresponding to these trees. Compared to the τ treePRGs
of Figure).#, which were combined without the interleav-
ing technique, we need to reveal 7 instead of 8 nodes (high-
est green nodes) to the verifier in order for her to reconstruct
thenecessary path to theopened shares. Again,✕marks the
hidden nodes for each of the τ TreePRGs. This figure is taken
from [BB#4].

In [BB#4], the average optimization of this technique is not provided, but we
can calculate it as follows.

Assuming we have a OneTree that was constructed as described above, we
need to calculate the probability that τ leafs have a path that merges close
to any other leaf. To do this, we can have a closer look at the problem. The
hidden shares, which are in different sub-trees, impact the optimization neg-
atively the further up the tree they force a split. More precisely, we have τ hid-
den shares, so the worst case is that at depth log2(τ), every share resides in
a unique sub-tree, which would result in no optimization. However, for every
shared sub-tree, we gain one seed point that does not need to be sent at this
height. Consequently, we can calculate the probability for this sharing of sub-
trees at this height, where hs is the number of sub-trees that share a hidden
share. Firstly, we need to consider the number of ways hs of the τ unique val-

7’

6 Tree-based Pseudorandom Number Generator

ues can be placed on τ → hs positions. This essentially results from selecting hs

hidden shares and placing them into a unique sub-tree of the OneTree, which
can be calculated via ε !

(ε−hs)! . Secondly, we need to consider the selection of the
remaining hidden shares in a way that they are in any of the already selected
sub-trees, represented by hsε−hs. We are thirdly dividing this by the total num-
ber of permutations of the sub-tree selection τ ε gives us the probability of the
OneTree structure optimizing the sharing. In other words, the probability of
only needing hs of the τ bigger sub-trees. The final equation is as follows:

Pr[sibling path merging] = τ ! · hsε−hs

(τ → hs)! · τ ε ().1)

Using this probability, we can calculate the percentile average of sub-trees
needed. On average, sampled over τ ≃ {2, . . . , 128} this results in needing≈ 63%

of the sub-tress and thus an optimization of ≈ 37%. We, therefore, can assume
an upper bound for the communication cost optimization by a factor of 0.4 or
using only 0.6 times the number of nodes revealed over τ treePRGs.

80

(Methodology

After introducing the different optimization strategies in the previous sections,
we will describe how these can be combined to reduce the communication
and computational costs of the original syndrome decoding in the head pro-
tocol. First, we implement these protocols, then analyze the new protocol’s
performance, and finally, we conclude with the security proof.

(.1 SIS Hypercube Tree

The protocol of the combined optimization follows the structure of the Small
Integer Sharing and hypercube optimization, where we can combine the dif-
ferent optimizations by following the order of the previous sections, starting
with SIS, followed by the hypercube structure, ending with the OneTree archi-
tecture.

(.1.1 Small Integer Sharing for Syndrome Decoding

Let us start with the Small Integer Sharing (SIS), which we must first convert
to the different underlying problem, the syndrome decoding. The SIS was de-
scribed on the sub-set sum problem, where the huge number space causes
themain communication cost, which is not the case for the syndrome decod-
ingproblem. However, let us first recall the subset sumproblem. Given a vector
g ≃ Zn

q and a number h ≃ Zq one must find a solution vector x ≃ {0, 1}n such
that:

n∑

j=1

xj · gj = h mod q

The accommodating additive secret sharing for the secret x is defined over the
number space Zq , which results in high communication costs, as the q needs
to be chosen big enough to ensure the hardness of the problem and thus in
the context of the MPCitH protocol the required soundness error. In addition,
the large number space increases the collision resistance, which impacts the

81

7 Methodology

protocol’s security. The size of the q used in the additive secret sharing is tack-
led by the SIS optimization. It is replaced by a smaller security parameter A
in connection with modifying the additive secret sharing. Here, N instead of
N → 1 shares are chosen uniformly random, and an additional auxiliary vector
!x is introduced. As described in Section 4.1.3, this works well but cannot be
transferreddirectly to the syndromedecoding (SD) problembecause the com-
munication costs of the syndromedecodingproblemstem from the size of the
vectors instead of the number space in the sub-set sum problem.

Next, recall the syndrome decoding problem. Given amatrix H ≃ F(m−k)×m
SD and

a resulting vector y ≃ Fm−k
q , find a vector x ≃ {0, 1}m such that H · x = y and the

hamming weight of x is wt(x) ≤ w. Here,m ≃ Fq defines the length of the solu-
tion vector x as well as the size of thematrix H in combinationwith the security
parameter k. This k is chosen big enough that the hardness of the problem is
preserved by determining the number of solutions for the problem. The secu-
rity parameter w further impacts the hardness of the problem by reducing the
number of solutions.

At first glance, it seems like we can directly apply the Small Integer Sharing to
the SDitH protocol. However, for a commonly chosen modulo q for the syn-
drome decoding problem, of either 2 or 28 = 256, there is little to no improve-
ment to be gained because q is already smaller than the number space of the
SIS. However, the communication cost defining parameter in the syndrome
decoding problem is the length of the solution vector x and, in turn, the result-
ing vector y and the matrix H. To reduce the dimension of the vector, it is im-
possible to reduce the length in the additive sharing, as x is commonly a binary
vector, and thus, reducing its length significantly is detrimental to the security
of theprotocol. Nevertheless, by introducinga larger number space, the length
restriction no longer binds us. This allows us to reduce the length of each share
without allowing an attacker to guess valid shares or, more precisely, the un-
opened share in the context of the SDitH technique. Although this reduces the
communication cost between the prover and the verifier, these shorter shares
of length sm do not allow a reconstruction of the secret, as they do not match
the original length m and thus do not contain the necessary information for a
successful reconstruction. This problem can be solved by introducing a hash
function SH : Zsm → {0, 1}m, whichmaps each share to abinary vector of length
m. Like the secretx, these shares are too long tobe efficiently obtained through
a brute force attack and thus do not reduce the protocol’s security. In addition,

8#

7.1 SIS Hypercube Tree

we need to calculate the auxiliary vector!x from these shares to obtain a valid
secret sharing. After that, we can follow the original protocol to implement the
Small Integer Sharing.

In contrast to the original protocol, which needs a binarity proof throughmask-
ing and cut-and-choose, the modified protocol does not. In the original Small
Integer, paper [FMRV##], they need to prove that the secret x is a binary vec-
tor, which does not follow from the correctness of the equation

∑n
j=1 xj · gj = h

mod q. This stems from the SIS mapping the shares into a different number
space; thus, their sumdoes not need to be binary. Furthermore, they only have
the sum of the equation to judge the secret from, which does not provide any
information about the structure of the underlying vector x. This x could con-
tain a single number to achieve the needed sum h and fill the rest with zeros
without being caught by the verifier. This is because all information is crushed
into a single number. However, the problem ofmissing information about the
secret is not contained in the syndrome decoding problem because its result
is the vector y. This vector y allows the verifier to check whether the shared se-
cret iswithin a specific number spaceby comparing each row to themaximum
values one could get. In addition, the secret is bound by its weight constraint.
Finally, by utilizing the batch product verification to prove that wt(x) ≤ w, we
further bind x to be within the provided number space Fm

SD .

We now formally define the SIS for the syndrome decoding problem.

SIS for SD
Let (H, y) be an instance of the syndrome decoding problem with H ≃
F(m−k)×m
q and y ≃ Fm−k

q and the secret x ≃ {0, 1}m such that

H · x = y and wt(x) ≤ w

where m, k, q ≃ Z are security parameters. Then k < m and wt(·) is the
hamming weight of a given vector. Further, let sm ≃ Z be the length of
the shorter shares, A ≃ Z the security parameter, similar to the one in
the original SIS, and N the number of shares. SH : FA

sm → {0, 1}m is a
deterministic hash function that maps an input vector of length sm to
a binary vector of length m. Thus, we utilize the Small Integer Sharing

83

7 Methodology

SIS for SD
as follows: ⎧

⎨

⎩
!x"i

$←→ {0, . . . , A→ 1}sm for all i ≃ [N]

!x ← x→ SH
(∑N

i=1!x"i
) (7.1)

Here, we map the shorter vector of values from Z to a binary vector to
further reduce the size of the resulting vector while not affecting the
protocol’s security. Thus, the verifier can obtain the secret x from this
sharing precisely as in the original Small Integer Sharing by calculat-
ing the sum of the shares, applying the hash function to this sum, and
adding the auxiliary vector to the hashed sum:

x = SH
(

N∑

i=1

!x"i

)
+!x (7.#)

This optimization reduces the communication cost of the original SDitH pro-
tocol while slightly increasing the computational cost depending on the ef-
ficiency of the hash function. To counter this, we incorporate the hypercube
optimization from Section (.

(.1.2 SIS Hypercube

The hypercube optimization introduced by Aguilar-Melchor et al. [AGH+##]
and described in Section (focuses on reducing the computational cost of the
offline phase in an MPCitH protocol. For this, they introduce a new geometry
they call hypercube, which is used to rearrange the original shares to reduce
the number ofMPCprotocol executions needed for the validation checkmade
by the verifier.
Let us recall the hypercube geometry. Given the original shares generated
through additive secret sharing, called leaf-shares, they create a hypercube
with length NH in each of the D dimensions, allowing us to contain ND

H =

N many leaf-party shares. After that, we create a new share for each hyper-
cube position, where the shares of one dimension add up to the secret shared
through the leaf-party shares. These new shares are called main-party shares
and are calculated by adding up the corresponding leaf-party shares to ob-
tain a new share. This works because the additive secret sharing used in the
MPC protocol operates independently of the samplingmethod of the individ-

84

7.1 SIS Hypercube Tree

ual shares as long as they addup to the shared secret. Thesemain-party shares
are indexed through (k, j), where k ≃ [D] determines the dimension of the hy-
percube and j ≃ [NH] specifies themain-party share in the selected dimension.
In addition, each leaf-party share is given a list of indices (i1, . . . , iD) ≃ [NH]D ,
where the position k in that list denotes the dimension in the hypercube and
the value of ik the main-party share in the dimension. Thus, the hypercube
contains ND

H many leaf-party shares through NH · D many main-party shares.
Thesemain-party shares are each calculated overND−1

H leaf-party shares. Each
share is used for one MPC protocol execution in the verification step, reducing
the number of MPC executions by a factor greater than 10.

To utilize the hypercube geometry in connection with the Small Integer Shar-
ing, we need to look at the underlying additive secret sharing used in the SIS
scheme. The sharing differs slightly from the commonly used additive secret
sharing described in Section 3.) by uniformly random sampling N instead of
N →1 shares. However, this does not pose a problem in the implementation, as
we can utilize the hypercube geometry and send the auxiliary value !x sepa-
rately. Furthermore, we do not need to modify the calculation of the auxiliary
value because the sum of the main-party shares per dimension is equivalent
to the sum of all leaf-party shares. Thus, if we calculate the sum of the main-
party shares and add the auxiliary value calculated over the leaf-party shares,
we get the secret x. This means we create the hypercube using the small inte-
ger shares !x"(i1,...,iD) ≃ {0, . . . , A→ 1}sm to calculate the main-party shares.

Similarly to the original SIS implementation, we can obtain the secret x by
summing up the main-party shares of the corresponding dimension, extend-
ing them using the hash function, and adding the auxiliary value.

With this in mind, we can give a formal definition of the Small Integer Sharing
with the hypercube geometry:

SIS Hypercube
Given an instance of the syndrome decoding problem (H, y) with H ≃
F(m−k)×m
SD and y ≃ Fm−k

SD . Further, let there be a secret solution x ≃ {0, 1}m,
such that H · x = y and wt(x) ≤ w. Here m, k ≃ FSD and m > k, we con-
sider nmany parties withN many shares. Then thereN many leaf-party
shares uniformly sampled as described in Equation 7.1. Each share
is given a list of indexes (i1, . . . , iD) ≃ [NH]D as described in Section (

8(

7 Methodology

SIS Hypercube
and an index of the main-party shares through (k, j) with k ≃ [D] and
j ≃ [NH]. From these, the main party shares !ms"(k,j) are calculated by
selecting every leaf party share that has at position k in its index list
(i1, . . . , iD) the value j. Thus, the prover P obtains N · D many main-
party shares positioned by (k, j) in the hypercube structure. Given these
main-party shares, P calculates the auxiliary value for the Small Integer
Sharing by selecting a random dimension D

′ of the hypercube, deter-
mining their sum, and applying the deterministic hash-function SH :

{0, . . . , A→ 1}sm → Fm
SD to the sum. Note that A is chosen as described in

Section 4. This hashed sum is then subtracted from x to obtain the aux-
iliary value !x, as described in the following equation. Calculating the
auxiliary value this way is the same as calculating it over the leaf-party
shares because both add up to the same sum.

!x = x→ SH(
NH∑

j=1

!x"j)

Now, the prover can share the leaf-party shares. To verify the obtained
shares, the verifier can calculate the main-party shares from the leaf-
party shares as described above and run the MPC protocol for each of
the main-parties.

With these two optimizations, we continue to the final optimization. This fol-
lows the standard optimization of using TreePRGs fromSection)but goes one
step further and utilizes the OneTree technique from [BBM+#4], which again
reduces the communication cost of the entire protocol.

(.1.3 SIS Hypercube OneTree

The OneTree technique introduced by [BBM+#4] and described in Section).1
can be applied to the Small Integer Sharing with the hypercube geometry be-
cause it only affects the generation of the random shares. Let us first recall the
TreePRG before talking about the OneTree.
The TreePRG is a random number generator commonly based on the Goldre-
ich, Goldwasser, and Micali(GGM) tree structure. This tree is initialized with
a random length d, representing the tree’s root. After that, one utilizes the

8)

7.1 SIS Hypercube Tree

length-doubling method, which takes an input of length d and generates a
random number of length 2 · d. After that, the new random number is split in
half and assigned to either the current node’s left or right child. This process is
repeated until we obtain N leafs, which can be used as shares. This structure
allows the prover to send only the tree nodes that are needed for the verifier
to calculate all other shares. In the context of the MPC in the head protocol,
the prover sends all nodes needed for the reconstruction without sending any
nodeon thepath to thehidden share. Thus, sheneeds to communicate log2(N)

many nodes, as shown in Figure).1.
The OneTree technique comes into play when we look at the τ execution of
an MPCitH protocol in order to achieve a given soundness error ε. For this, we
generate τ TreePRGs, one for each execution, and rearrange them such that
the first τ leafs of the OneTree correspond to the first element of each of the τ
commitments. This rearrangement can be seen by comparing the leaf order
in Figure).# and the leaf order in Figure).3. This rearrangement allows the
prover to reduce further the number of sent nodes by a factor of 0.6.
In order for us to incorporate this structure, we change the leaf-party share
generation toutilize a TreePRG for eachof the τ executions and rearrange them
accordingly to form the OneTree structure. After that, the protocol is executed
without any modifications, using the new random shares as described in the
previous section.
These optimizations form our approach to the MPCitH protocol based on the
syndrome decoding problem. The entire protocol is described in the following
Protocol 7.1.

87

7 Methodology

SIS hypercube OneTree SDitH protocol part 1

Prover Verifier

H = (H′|Im−k) ≃ F(m−k)×m
SD H = (H′|Im−k) ≃ F(m−k)×m

SD

y ≃ Fm−k
SD y ≃ Fm−k

SD

x = (xA,xB) ≃ Fm
SD such that y = H · x

and wt(x) ≤ w
Construct the MPC inputs for each
of the τ executions
S,Q,P,F, tree = Proto. 7.#
Compute the shares
(!xA", !Q", !P", !a", !b", !c"),
(!xA,!Q,!P,!a,!b,!c) = Proto. 7.3
Compute the commitment hash
For each execution e ≃ [τ] :

comaux = Com(!xA||!Q||!P||!a||!b||!c)

h[e] = Hash1(com[e]
1 , . . . ,com[e]

ND
H
,com[e]

aux)

Rearrange the trees of the τ treePRGs
to form a OneTree

h[e]∀e ≃ [τ]

Sample t challenge points for
polynomial verification
for all τ executions
For each execution e ≃ [τ] :

(z, ϵ)[e] ≃ Ft
points × Ft

points

(z, ϵ)

Execute MPC protocol on (z, ϵ)

Build hash h′
k by running Algo. 7.4.

h′ = Hash4(h
′
1, . . . , h

′
D)

h′

Pick uniformly for each e ≃ [τ] :

(i∗1, . . . , i
∗
D)[e] → {1, . . . , NH}D

((i∗1, . . . , i
∗
D)[e])∀e∈[τ]

88

7.1 SIS Hypercube Tree

SIS hypercube OneTree SDitH protocol part 1

Prover Verifier

Open the corresponding elements
If there exists a j → [ND

H] such that:
· either !xj"(i∗1 ,...,i∗D) = 0with xj = 1

· or !xj"(i∗1 ,...,i∗D) = A− 1with xj = 0

then abort
else:
Send answer using OneTree sibling path
and calculate !α"(i∗1 ,...,i∗D), !β"(i∗1 ,...,i∗D)

using Proto. 7.4 on related leaf-parties
((seed(i1,...,iD), p(i1,...,iD))

∀(i1, . . . , iD) ↔= (i∗1, . . . , i
∗
D)

com(i∗1 ,...,i
∗
D),

!α"(i∗1 ,...,i∗D),

!β"(i∗1 ,...,i∗D))
∀e∈[τ]

The verifier accepts if and only if:
1. For each i′ ↔= i∗ :

· Expand seeds to get leaf-party
shares (they have 0.6 · (D · log(NH))τ

seeds in the sibling paths),
each is expanded to the leaf-party
level giving (ND

H − 1)τ leaves
· Calculate h′ using the computed
seeds, auxiliary values and comi∗

· Compare h′ and h, where
h = Hash2(com1, . . . ,comND

H
,comaux)

2. Compute the hash h′
v and α,β, v

using Proto. 7.# and check:
· α,β, v are the same in each

of the t executions

· h′
v = Hash4(h

v′

1 , . . . , hv′

D) is the
same as h′ from the prover

Protocol 7.1: This protocol describes our approach to optimize the MPCitH protocol by utilizing the Small
Integer Sharing from [FMRV22], the hypercube geometry from [AGH+22] and the OneTree
pseudorandom generator structure introduced in [BBM+24].

8’

7 Methodology

Construction of the polynomials and tree expansion

Input: The secret x, its lengthm, the security parameter λ and τ
Output: S,Q,P,F, tree

the τ executions
For each e → [τ] :

Generate root seed

mseed[e]
$←− {0, 1}λ

Compute ND
H leaf seeds through

TreePRG (expand root into ND
H leafs)

(seed[e]i , p[e]i)i∈ND
H
← TreePRG(mseed[e]) seed[e]i → {0, 1}λ, p[e]i → Z

Create polynomials for batch product
verification (wt(x) ≤ w)
Choose v ≃ [m] such that |v| = m and {i → [m] : xi ↔= 0} ≃ v)

S → Fpoly[X], such that ∀i → [m] S(γi) = φ(xi) and deg(S) ≤ m− 1 S → Fm
poly

Q → Fpoly[X], such thatQ(X) =
∏

i∈v

(X − γi) Q → Fq
poly with q = deq(Q) ≤ w − 1

F → Fpoly[X], such that F(X) =
∏

i∈[m]

(X − γi) F → Fm
poly

P → Fpoly[X], such that P = (Q · S) · F P → F≤m
poly

Protocol 7.2: In this protocol, we construct the treePRG and the polynomials for the SDitH protocol. Note
thatS, in contrast to the other polynomials, is obtainedby interpolation over the coordinates of
x. Furthermore, γ is the bijective mapping between {1, . . . ,Fpoly} and Fpoly and φ is the canon-
ical inclusion of FSD in Fpoly .

’(

7.1 SIS Hypercube Tree

Construction of the secret shares

Input: The polynomials: S,Q,P,F, tree

Output: (!x", !Q", !P", !a", !b", !c"),
(!x,!Q,!P,!a,!b,!c),com
Initialize main party shares as zero
For each share (k, j) → [D]× [NH] :

Secret share the information containing x

!x"(k,j) = 0

Polynomial shares
!Q"(k,j) = 0, !P"(k,j) = 0

Beaver triple shares
!a"(k,j) = 0, !b"(k,j) = 0, !c"(k,j) = 0

Generate polynomial share at leaf level
For each leaf i′ → [ND

H] :

{!a"i′ , !b"i′ , !c"i′}← PRG(seedi′) !a"i′ , !b"i′ , !c"i′ → Fpoints × Fpoints,×Fpoints

!x"i′ ← PRG(seedi′) !x"i′ → Fsm
A

(!Q"i′ , !P"i′)← PRG(seedi′) (!Q"i′ , !P"i′) → F|Q|
A × F|P|

A

comi′ = Com(seedi′ , pi′)

Index leaf party shares !x"i on hypercube (i′1, . . . , i
′
D),

where i′k → {0, . . . , NH − 1}
Compute main party shares
For each main party share index
p → {(1, i′1), (2, i′2), . . . , (D, i′D)} :

!x"p+ = !x"i′ !x"p → Fsm
A

!Q"p+ = !Q"i′ , !P"p+ = !P"i′ !Q"p, !P"p → F|Q|
A × F|P|

A

!a"p+ = !a"i′ , !b"p+ = !b"i′ , !c"p+ = !c"i′ !a"i′ , !b"i′ , !c"i′ → Fpoints × Fpoints,×Fpoints

Calculate the auxiliary values
Choose d → [D]

!x = x− SH

⎛

⎝
∑

i∈{0,...,NH−1}

!xA"[d]i

⎞

⎠ !x → Fm
SD

!Q = Q− SH

⎛

⎝
∑

i∈{0,...,NH−1}

!Q"[d]i

⎞

⎠ ,!P = P− SH

⎛

⎝
∑

i∈{0,...,NH−1}

!P"[d]i

⎞

⎠ !Q,!P → F|Q|
poly × F|P|

poly

!a = a− SH

⎛

⎝
∑

i∈{0,...,NH−1}

!a"[d]i

⎞

⎠ ,!b = b− SH

⎛

⎝
∑

i∈{0,...,NH−1}

!b"[d]i

⎞

⎠ !a,!b → Fpoints × Fpoints

!c = 〈a, b〉 − SH

⎛

⎝
∑

i∈{0,...,NH−1}

!c"[d]i

⎞

⎠ !c → Fpoints

Protocol 7.): This protocol generates the secret shares, as well as the polynomial shares with their beaver
triple, needed for the verification process at the end of the main Protocol 7.1. Note that each
share of a, b, c is a single polynomial. In addition, the indices on the hypercube for each leaf-
party share are a list or tuple, where the position in the list represents the dimension of the
hypercube and the value at that position the main-party share it belongs to. This means that
each main-party share is calculated using ND−1

H many leaf-party shares.
’1

7 Methodology

Execution of
∏

on a given set of parties

Input: The secret shares: (!x", !Q", !P", !a", !b", !c"),
(!xA,!Q,!P,!a,!b,!c)

and the t evaluations points (z, ϵ)
Output: !α", !β", !v", h′

k

For each axis k → [D] betweenmain parties (k, 1) . . . (k,NH) :

Main-Parties locally compute !S" !S" → Fsm
A

by interpolating !x"
Main-parties interpolate !S over !x !S → Fm

SD

Compute Beaver triple elements
For each l → [t] :

Main-Parties locally evaluate !S"(zl), !Q"(zl), !P"(zl) !S"(zl), !Q"(zl), !P"(zl) → FA × FA × FA

Main-Parties !αl" = ϵl · !Q"(zl) + !al" !αl", ϵl, !al" → FA × FA × FA

Main-Parties !βl" = !S"(zl) + !bl" !βl", !bl" → FA × FA

Main-Parties !αl = ϵl ·!Q(zl) +!al !αl,!Q,!al → Fpoints × F|Q|
points × Fpoints

Main-Parties !βl = !S(zl) +!bl !βl,!bl → Fpoints × Fpoints

open !αl" and !βl" to get αl,βl αl,βl → Fpoints × Fpoints

Main-Parties locally:
!vl" = −!cl" + 〈ϵ,F(zl) · !P"(zl)〉+ 〈αl, !bl"〉+ 〈βl, al〉 − 〈αl,βl〉 !vl",F(zl) → FA × Fm

poly

!vl = −!cl + 〈ϵ,F(zl) ·!P(zl))〉+ 〈αl,!bl)〉+ 〈βl,!al)〉 − 〈αl,βl〉 !ve,!cl,!P(zl) → Fpoints × Fpoints × Fpoints

h′
k = Hash3(!α", !β", !v",!v)

Protocol 7.4: This protocol describes the execution of the MPC protocol for given z, ϵ points. Here, the poly-
nomials are evaluated on the given points to calculate the beaver triple and verify the weight
constraint of the secret without revealing any information about it. Recall that opening the
shares !αl", !βl" means we calculate the sum of their shares and add the auxiliary value to ob-
tain the secret shares α and β. The auxiliary values must be calculated separately because of
the Small Integer Sharing.

’2

7.1 SIS Hypercube Tree

Verify a partition of parties

Input: The secret shares: (!x", !Q", !P", !a", !b", !c"),
(!x,!Q,!P,!a,!b,!c)

and the t evaluations points (z, ϵ). For the leaf-party with hidden
share i∗ we use partial aggregations from its disclosed leaf-parties.
And get the index i∗ with the communications !α"i∗ , !β"i∗ , !v"i∗

Output: !α", !β", !v", hv′

k

For each h → [D] :

Main-Parties locally compute !S" by interpolating !x" !S" → Fsm
A

Main-parties interpolate !S over !x !S → Fm
SD

Compute Beaver triple elements
For each l → [t] :

Main-Parties locally evaluate !S"(zl), !Q"(zl), !P"(zl) !S"(zl), !Q"(zl), !P"(zl) → FA × FA × FA

Main-Parties !αl" = ϵl · (!Q"(zl) + !al") !αl", ϵl, !al" → FA × FA × FA

Main-Parties !βl" = !S"(zl) + !bl" !βl", !bl" → FA × FA

The partially disclosed parties calculate their shares !αl", !βl"
as above and add the communicated !αl"i∗ , !βl"i∗
to !αl" and !βl"

Main-Parties !αl = ϵl ·!Q(zl) +!al !αl,!Q,!al → Fpoints × F|Q|
points × Fpoints

Main-Parties !βl = !S(zl) +!bl !βl,!bl → Fpoints × Fpoints

Open !αl" and !βl" to get αl,βl αl,βl → Fpoints × Fpoints

Main-Parties locally:
!vl" = −!cl" + 〈ϵ,F(zl) · !P"(zl)〉+ 〈αl, !bl"〉+ 〈βl, al〉 − 〈αl,βl〉 !vl",F(zl) → FA × Fm

poly

!vl = −!cl + 〈ϵ,F(zl) ·!P(zl))〉+ 〈αl,!bl)〉+ 〈βl,!al)〉 − 〈αl,βl〉 !ve,!cl,!P(zl) → Fpoints × Fpoints × Fpoints

!vl"i∗ is set such that vl = 0→ !vl"i∗ = −(!vl +
∑

i '=i∗

!vl"i) !vl"i∗ → FA

hv′

k = Hash3(!α", !β", !v")

Protocol 7.#: In this protocol, the verifier executes the MPC protocol to verify a partition of parties. The
partially disclosedmain-party shares are calculated similarly to the non-disclosedmain-party
shares, where a zero vector replaces the hidden leaf-party share. This allows us to calculate
each α share independent of the hidden index and add the corresponding communicated
!α"i∗ if needed to obtain the entire share of α. Calculating the β and v share is done equiva-
lently. This follows the hypercube structure of [AGH+22], where this procedure is not explic-
itly mentioned. Furthermore, note that this process needs to be done for D

2 manymain-party
shares, which is the number of partially disclosed main-parties.

’)

7 Methodology

Beforewedive into theperformanceanalysis, wewill look at thenon-interactive
transformation of our SDitH protocol with the hypercube and OneTree struc-
ture to obtain a signature scheme. For this, we utilize the Fiat-Shamir trans-
formation and follow the methodology described by [FJR22]. More precisely,
the first and second challenges are generated non-interactively by hashing
the transcript up to that point and expanding the hashes to form their corre-
sponding challenge. For the first challenge, we generate the hash from the
initial commitments across all τ repetitions to get:

h2 = Hash2(m, salt,com[1], . . . ,com[τ])

Thenweexpand the challenge through thepseudorandomgeneratorPRG(h2)

to obtain the challenge points {z[e], ϵ[e]}. In order to acquire the second chal-
lenge, we again hash the transcript that is generated up to the point of the
second challenge, which results in:

h3 = Hash4(m, salt, h2, {h′[e]1 , . . . , h′[e]D }e∈[τ])

Similarly to the first challenge, this hash is expanded using the PRG(h3) to ob-
tain the leaf party shares for the second challenge, namely {i∗[e]}e∈[τ].

Furthermore, note that because of this transformation, the security of the pro-
tocol can no longer be purely considered based on a brute force attack, as the
attack on the Fiat-Shamir transformed scheme gives the attacker an advan-
tage, which was described by [AABN(2] and [FS(6]. In essence, this tells us
that for protocolswithmore thanone challenge fromaverifier, theprover often
needs to correctly guess only one of the challenges for her to cheat success-
fully. Thus, the challenges of protocols with five or more passes can no longer
be considered independently.

With this in mind, we can derive the forgery attack cost. Following the attack
presented by [KZ2(], which generates an additive attack cost instead of amul-
tiplicative one by breaking the two rounds of the protocol separately. This cost
relies on finding an optimal τ ′ that allows us to correctly guess the first chal-

’4

7.# Performance Analysis

lenge with the lowest possible cost. This cost can be calculated via:

costforge := min
0≤τ ′≤τ

{
1∑τ

i=τ ′
(τ
i

)
· pi · (1− p)τ−i

+ (ND
H)τ−τ ′

}

≤ min
0≤τ ′≤τ

{
1

p

τ ′

+ (ND
H)τ−τ ′

}

Here, p is the false positive probability, which is the same as in the syndrome
decoding (Equation).1(). This forgery cost ismuch lower than the brute-force
cost of 1

ετ , which in turn means that the security parameter needs to be mod-
ified accordingly. This strategy and forgery cost follows the one described in
the paper by [AGH+22].
In this section, we detailed the non-interactive transformation of our SDitH
protocol using the Fiat-Shamir methodology, specifying how challenges are
generated through hashing and pseudorandom expansion. By applying this
transformation, we achieve a signature scheme that balances efficiency with
enhanced resistance to forgery, accounting for the adversarial advantage out-
lined by [AABN(2] and [FS(6]. With this structure in place, we can proceed
to analyze the performance implications, including the effectiveness of SIS for
syndrome decoding with the hypercube and the OneTree optimization.

#.2 Performance Analysis

in this section we analyze our protocol’s performance (7.1) concerning the
communication costs. We will provide the cost of the zero-knowledge pro-
tocol in order for us to compare it to other protocols based on the syndrome
decoding problem. More precisely, we will compare our approach to the orig-
inal SDitH protocol of [FJR22], as well as the version utilizing the hypercube
geometry [AGH+22] and the protocol that introduced the OneTree pseudo-
randomnumber generator based on the tree structure [BB24]. Beforewe dive
into the entire protocol, we will examine the individual improvements of the
optimizations we utilized. Again, we start with the Small Integer Sharing, then
include the hypercube geometry, and finally, add the OneTree structure. Note
that we will examine these optimizations in isolation without any surrounding
communication.
For the Small Integer Sharing, we need to sampleN uniformly random vectors

’#

7 Methodology

and calculate a corresponding auxiliary vector of lengthm. However, instead of
sampling random vectors of lengthm, we reduce their length to be sm, where
sm << m. Furthermore, we need to consider the new number space of A, from
which the N uniformly random vectors are sampled, resulting in a sampling
from {0, . . . , A − 1}. The auxiliary value is the difference between the hashed
sum of the shares and the secret x in the corresponding number space FSD .
Thus, the resulting communication costs are:

costscomm = N · log2(A− 1) · sm+m · FSD (7.))

After applying the Small Integer Sharing, we add the hypercube geometry
to the sharing and verification process. This geometry does not impact the
communication cost but reduces the computational costs. This is important
because replacing the additive secret sharing with the Small Integer Sharing
adds computational cost in the form of the hash functions, which are needed
to expand the short shares to the longer ones needed to obtain the secret.
The hypercube geometry reduces the n evaluations (one for each party) to
1 + (NH − 1) · D. On average, this comes down to about 10 times fewer cal-
culations.

The final optimization is adding theOne Tree to Rule themAll (OneTree), which
rearranges the shares of the τ protocol executions into a single tree in a way
that, on average, only 60% of the sibling path nodes in the treePRG need to
be send. For this, we will firstly modify the Equation 7.) for the SIS sharing to
incorporate τ executions, leading to:

costscomm = τ · (N · log2(A− 1) · sm+m · FSD))

The OneTree now affects, as mentioned, the number of shares that need to
be sent over the τ executions. Furthermore, utilizing the GGM pseudorandom
number generator allows us to send the sibling path to the hidden share. This
sibling path contains log2(N)many nodes. It also means that we can send the
seeds of the sibling path, which are bit strings of length λ. This reduces the
communication costs significantly but also shows that the SIS optimization
does not make any difference in the communication costs at this point. The
resulting communication costs for the sharing are as follows:

costscomm ≈ 0.6 · τ(· log2(N) · λ+m · FSD))

’6

7.# Performance Analysis

With these costs in mind, we can dive into the entire protocol. To simplify the
performance analysis of the entire protocol, wewill leave out some of the com-
munication that can be seen in Protocol 7.1. More precisely, we ignore the
communication cost for the challenges sent by the verifier because they add
an arbitrarily small amount compared to themain communication cost. Thus,
we need to consider the communication costs of the following aspects:

• Com: The hash h resulting from the ND
H commitments

• Res1: The hash h′, which contains theD hashes from theMPC simulations

• Res2: The final communication from the prover containing
(seed(i1,...,iD), p(i1,...,iD))∀(i1, . . . , iD) ↔= (i∗1, . . . , i

∗
D),

com(i∗1,...,i
∗
D), !α"(i∗1,...,i∗D), !β"(i∗1,...,i∗D))

∀e∈[τ]

First we consider each of the leaf-party shares (i′ = (i1, . . . , iD) → {1, . . . , ND
H }),

whichneed tobe shared via their treePRGseedof λbits. In addition, weneed to
send the auxiliary value for the party shares (!x) and the corresponding auxil-
iary values for the batch product verification. This includes the polynomial aux-
iliary values (!Q,!P) → Fpoly and the values for the beaver triple (!α", !β",!c →
Fpoints). Wealsoneed to consider the impact of thehypercubegeometry on the
commitments and responses of the prover and verifier. This geometry allows
us to formulate the costs of sending the leaf-party shares (tree seeds) as the
sibling path to the hidden share of length D. This will cost us D · λ · log2(N). Fi-
nally, we need to consider the costs of sending the commitments com(i∗1,...,i

∗
D),

which cost 2 ·λ bits, as well as the two hashes h and h′ each of length λ bits. The
resulting communication costs for one execution are:

costscomm = 4 · λ Com and Res1
+D · λ · log2(N) PRG seeds

+m · log2(|FSD|) !x

+ (2 · w) · log2(|Fpoly|) !Q,!P

+ 2 · t · log2(|FA|) !α"(i∗1,...,i∗D), !β"(i∗1,...,i∗D)

+ t · log2(|Fpoints|) !c

+ 2 · λ comi∗1,...,i
∗
D

Here, we can also see that the SIS optimization no longer affects the commu-
nication cost regarding the sharing becausewedo not send explicit shares but

’7

7 Methodology

rather the seeds needed to reconstruct them. However, the α and β shares are
in the smaller number space, which reduces the communication cost slightly.
Similarly to the original SDitH, completing one execution of this process does
not provide the target security level of 2−λ. We, therefore, need to perform the
protocol τ times in parallel. However, we do not need to send every aspect
τ times, as we can compute all commitments of the τ executions and the D

hashes for each execution and produce a single hash. Thus, the final com-
munication costs for our SDitH protocol with the hypercube and the OneTree
structure are:

costscomm = 4 · λ Com and Res1
+ τ ·

(
D · λ · log2(N) PRG seeds

+m · log2(|FSD|) !x

+ (2 · w) · log2(|Fpoly|) !Q,!P

+ 2 · t · log2(|FA|) !α"(i∗1,...,i∗D), !β"(i∗1,...,i∗D)

+ t · log2(|Fpoints|) !c

+ 2 · λ
)

comi∗1,...,i
∗
D

Finally, we analyze the SIS’s computational impact on the protocol. Here, the
most significant aspect is reducing the vector length and, thus, the elements
of theMPC protocol execution. By reducing the vector length to sm, the prover
and the verifier must perform the MPC protocol over smaller polynomials, sig-
nificantly reducing the computation time. On the one hand, this is because
the effort to interpolate the polynomial S depends on the number of interpo-
lation points. On the other hand, calculations with polynomials are less opti-
mized on modern hardware. Note that every operation of the SDitH protocol
is done on polynomials as the number spaces are defined over prime fields
(2a, where a is some number in Z), which means that each number must be
represented by a polynomial in order to satisfy all needed characteristics, such
asmultiplicative inverse. Thus, we significantly reduce the computational costs
of the SDitH protocol, which we will visualize in Section 8.2.

Wewill now dive into the security proof of our protocol in the following section.

’8

7.3 Security Proof

#.3 Security Proof

The securityproof of our SDitHprotocol closely follows theproof from [AGH+22]
due to the protocol’s similarity and the underlying hardness assumptions. In
addition, Protocol 7.1 follows a five-round structure, in which an honest prover
P follows the protocol in the odd rounds (1, 3, 5) and an honest verifier follows
the even rounds (2, 4). The rounds can be seen as the algorithms between sent
messages.

For the security proof, we consider a general or malicious prover P̃ to be some-
one who does not necessarily know the secret or follows the protocol correctly
but producesmessages of the same type as messages from an honest prover.
The proof structure follows the security proofs of previous sections, where we
show that a prover who knows a correct secret will always be accepted (Com-
pleteness) and provide an honest-verifier zero-knowledge proof. Lastly, we will
show that amalicious proverwho commits to a badwitness, whichmeans that
it does not encode a syndrome decoding solution, will only be accepted with
a probability lower than or equal to ε ≈ 1

ND
H
(soundness). However, before we

startwith theproof, we first need to establish the abort event probability, which
will serve as a key parameter later in quantifying the likelihood that amalicious
provers attempt results in protocol rejection, reinforcing the soundness guar-
antee. This proof follows closely the proof in [FMRV22].

Abort Events
To formally address the probability of protocol termination due to an
abort event, we first define the relevant events associated with such oc-
currences. These events follow the conditions described in Section 4.1
to prevent information leakage of the shared secret. The abort events
are defined as follows:

1. A0
j := {xj = 0, !xj"i∗ = A− 1}

2. A1
j := {xj = 1, !xj"i∗ = 0}

). Aj = A0
j ∪A1

j

If we look at our SDitHprotocol, wehave, by construction, an abort prob-

’’

7 Methodology

Abort Events
ability of

Pr[abort] := Pr

⎡

⎣
m⋃

j=1

Aj

⎤

⎦ (7.4)

If we now consider a random variable X , which is modeling the secret
vector x → Fm

SD , we have:

Pr[abort|X = x] = Pr

⎡

⎣
m⋃

j=1

Aj |X = x

⎤

⎦

= 1− Pr

⎡

⎣
m⋂

j=1

(¬A0
j ∩A1

j)|X = x

⎤

⎦

= 1− Pr

⎡

⎣
m⋂

j=1

(¬Axj

j |X = x

⎤

⎦

= 1− Pr

⎡

⎣
m⋂

j=1

!xj"i∗ ↔= (1− xj) · (A− 1)

⎤

⎦

= 1−
m∏

j=1

Pr [!xj"i∗ ↔= (1− xj) · (A− 1)]

= 1−
(
1− 1

A

)m

We can perform the second transformation because ¬A1−xj

j is true in
the case of Xj = xj , which is assumed. Further, we can substitute the
section operator inside the probability with the product of the probabil-
ities because the coordinates of the secret share !x"i∗ are independent
of each other. Thus, we get the resulting probability of the abort event
as:

Pr[abort] = 1−
(
1− 1

A

)m

(7.#)

Furthermore, we know that it is independent of X .

With this in mind, we can go over the security proof of the Protocol 7.1, where
we start with the completeness property.

1((

7.3 Security Proof

(Perfect) Completeness
The protocol is perfectly complete, meaning that a prover P with the
knowledge of a witness w, who performs her protocol rounds correctly
and there is no abort event, will be accepted by an honest verifier Vwith
probability 1. Thus, the completeness probability of the protocol is:

1− Pr[abort]

Proof: For any choice of randomness for P,V, the computation of P
passes all the verification checks performed by the verifier by construc-
tion. The completeness probability of 1 − Pr[abort] from Equation 7.#
implies the rest of the statement.
Second Aspect: Given a malicious prover P̃ with a bad witness, mean-
ing that S ·Q ↔= P · F in the first round of the protocol, who is unable to
find a hash or commitment collision has a probability of lower or equal
to ε = (p + (1−p)

ND
H

) of cheating successfully. This means an honest verifier
V falsely accepts her bad witness.
Proof: We consider the two scenarios in which V would accept, given a
bad witness S ·Q ↔= P · F:

1. The random value that is encoded by !v" is zero, which has a prob-
ability of p

2. P̃must cheat on the communications they send, corresponding to
the MPCitH protocols on the main-parties, so the resulting vector
v appears as the zero vector.

Because the first scenario is captured by the false positive probability p,
we focus on the second scenario. After the first commitments the veri-
fier sends the corresponding challenge points z, ϵ. Thus, looking at the
first scenario, which occurs with a probability of p, the plain-text vector
v, generated by theMPC protocol, is the zero vector. This is, for example,
the case when on all t points δ = (S ·Q−P · F)(z) = 0 and/or the beaver
triple of the first round, satisfies c− 〈a, b〉 = ϵ · δ.
However, if at least one of the challenge points results in S · Q(zi) ↔=
P · F(zi) than the malicious prover needs to cheat on the communica-
tion. This happenswhen at least one of the coordinates of the plain-text
vector v = c − 〈a, b〉 − ϵ · δ is non-zero, which has a probability of (1 − p).

1(1

7 Methodology

(Perfect) Completeness
Themalicious prover needs to cheat on the communication because, in
this case, the verifier would not accept the communication !α", !β", !v"
resulting from an honest execution of the protocol.
The malicious prover commits to one independent SDitH run per hy-
percube dimension, resulting in D commitments in round 3. We can
assume that P̃ cheats on one of the SDitH runs’ communications. Thus,
without loss of generality, we can assume that she will cheat on the
share of α. It is equally valid to assume that P̃ cheats on either β or v.
Here, the share !α" consists of NH main-party shares !α"i, meaning the
malicious provermust pick one to cheat on. This has a success probabil-
ity of 1

NH
. However, each of themain-party shares consists of the sum of

ND−1
H leaf-party shares, fromwhich all but one are opened. Thus, P̃must

cheat on the share !α" of a particular leaf-party lp by shifting its value by
δ ↔= 0. Furthermore, because all but one leaf-party share are opened,
themalicious prover cannot cheat onmore than one of those shares, as
one of themodified shares would be opened and immediately spotted.
Cheating on none of the leaf-party shares wouldmean that vwould not
be the zero-vector, which the verifier would not accept.
Furthermore, the leaf-party ls is contained in one of the NH main-party
shares of each SDitH run. Thus, P̃must shift the value of !α" by the same
δ for each of the other main-party shares, which cannot be achieved
by computing an offset using leaf-party shares. This follows the same
reasoning of cheating on multiple leaf-party shares, which is always re-
vealed by opening all but one leaf-party share. Any other cheating pat-
tern is not possible by the same logic, which means that each main-
party share containing ls must be cheated on by δ in their respective
SDitH run.
This leads to only one way for P̃ to avoid detection, where the uniformly
random challenge i∗ in round 4 reveals the exact coordinates of lp. Thus,
themain-party containing lp is the hiddenmain-party share, which has
a probability of 1

ND
H
. This is equivalent to the challenge of hiding the ex-

act leaf-party share ls out of the ND
H leaf-party shares. Thus, in case of

no abort event and a non-false positive scenario, the malicious prover
has a chance of cheating of ≤ 1

ND
H
. Here, we can ignore the abort event

1(2

7.3 Security Proof

(Perfect) Completeness
probability because rejecting does not affect the verifier checks, shown
in the abort event 7.). Therefore, the resulting probability of a prover
with a bad witness being accepted is:

ε = p+
1− p

ND
H

(7.6)

Now we dive into the honest-verifier zero-knowledge (HVZK) proof, where we
construct a simulator replicating the protocol’s transcript without knowledge
of the secret. For this, we rely on the indistinguishability of the pseudorandom
number generator (PRG) and commitment scheme from true randomness to
ensure that the simulator’s output is computationally indistinguishable from
a real protocol execution. We will begin with a ’true transcript’, representing
an honest execution of the protocol, and then iteratively modify it to reach the
simulator’s transcript. By showing that each step maintains indistinguishabil-
ity, we conclude that the protocol’s distribution is unaffected by these transfor-
mations, which shows that our SDitH protocol is HVZK.

Honest-Verifier Zero-Knowledge
If the pseudorandomnumber generator of the protocol in combination
with the commitmentCom are indistinguishable from theuniform ran-
dom distribution, then the protocol is honest-verifier zero knowledge.
Proof: Before we describe the simulator construction needed for this
proof, it is important to note that the abort event is independent of the
secret and, thus, does not leak any information about the secret. This
was shown in Proof 7.).
With this in mind, we need to construct a simulator S that creates a
transcript of the Protocol 7.1, which is computationally indistinguish-
able from the real transcript. For this, we assume that the PRG of the
protocol is (t, ϵPRG)-secure, as well as the commitment Com is (t, ϵcom)-
hiding. Furthermore, we will shorten the writing of the leaf-party in-
dices (ik1 , . . . , ikD) to i′ and the challenge indices (i∗1, . . . , i∗D) to i∗, for bet-
ter readability.
After this, we can construct the simulator described in 7.6, which pro-
duces the transcript responses (Com, CH1, RSP1, CH2, RSP2). Next, we

1()

7 Methodology

Honest-Verifier Zero-Knowledge
need to show that the transcripts produced are computationally indis-
tinguishable from a real transcript. We start by constructing a so-called
true transcript, which is a transcript from the successfully executed pro-
tocol, and modify it step by step. After each modification, we need to
argue why the indistinguishability still holds. We do this until the sim-
ulator S transcript is reached, which concludes the proof. Let us start
with the true transcript.
True trans(r)pt (v0): For this, we take as input awitness x and the hon-
est verifier challenges (z, ϵ, i∗), onwhich the Protocol7.1 is executed cor-
rectly. Thus, we obtain a ’correct’ output distribution.
S)mulator (v0): The first modification of the true transcript is replac-
ing the randomness of the leaf-party i∗ with true randomness. Thus,
the auxiliary values !x,!Q, !P,!a and !b are calculated as stated in
the protocol. So, the witness shares of all leaf-party shares still sum up
to the corresponding sum and, in connection with the auxiliary values,
give the input witness. By extension, this applies to every share in each
of the MPCitH runs. Thus, the difficulty of distinguishing between the
output of the simulator Sv1 and the real distribution is the same as dis-
tinguishing PRG from true randomness.
S)mulator (v1): For this modification, we alter the computation of the
auxiliary values, which still depend on the input witness. For this we
replace the auxiliary values!xA,!Q,!P,!a and!bwith true random-
ness. This does not change the distribution between the simulator Sv1

and Sv2 because they appear as true randomness through their origi-
nal calculation as well. The only affected elements of the protocol are
the auxiliary values!α and!β. However, the distribution of the simula-
tor Sv1 is not changed by this because they are calculated as described
in Protocol 7.1, which is done on seemingly true randomness as stated
before. Furthermore, we can reduce the input to the simulator to the
challenges CH1 and CH2.
S)mulator (v2): Finally, we also draw !α and !β via true randomness,
which already appears to be uniformly distributed in the simulator Sv2

and thus do not change the distribution between Sv2 and Sv3 . The out-
puts of this simulator (RSP1, RSP2) are indistinguishable from those of
an honest execution of our Protocol7.1. The resulting simulator, utilizes

1(4

7.3 Security Proof

Honest-Verifier Zero-Knowledge
the simulator described in Protocol 7.6 and applies the hiding property
to comi∗ ,comaux. After that, it performs the following steps:

1. Generate the two challenges CH1, CH2

2. Run the simulator Sv3 in order to get RSP1, RSP2

). Set the initial leaf-party commitments i′ ↔= i∗ ascom′
i = Com(seedi′ , pi′)

4. Draw comi∗ at random for the hidden leaf-party i∗

#. Draw comaux at random

6. Compute the initial commitments via
Com = Hash(com1, . . . ,comND

H
,comaux)

From this, we obtain the output of the global HVZK simulator, that is,
(t, ϵPRG + ϵCom)-indistinguishable from the real distribution.

1(#

7 Methodology

HVZK Simulator

Sample seed $←− {0, 1}λ

Generate (seedi′ , pi′) for all leaf-parties via TreePRG(seed)

Step 1: Sample Challenges
CH1 = {z, ϵ}← Ft

points × Ft
points

CH2 = i∗ ← [ND
H]

Step 2: Generate ND
H leaf-party shares

Expand root seedi′ via TreePRG to get ND
H leaf party seeds

Step 3: Generate leaf-party commitments and witness shares
For each i′ ↔= i∗ :

Compute comi′ = Hash(seedi′ , pi′)

Expand leaf-party seeds to get secret shares
Generate auxiliary values: !x,!Q,!P,!c

Calcualte the auxiliary commitment comaux = Hash(!x,!Q,!P,!c)

For each i′ = i∗ :

Draw comi∗ at random
Compute initial commitments Com = Hash(com1, . . . ,comi∗ , . . . ,comND

H
,comaux)

Step 4: Generate Party Communications
Draw !α"i∗ , !β"i∗ uniformly at random from their respective domains
For each k → [D] :

if ik ↔= i∗k :

Get communications {!α"ik , !β"ik , !v"ik} as stated in Protocol 7.1 and 7.4
if i∗k :

Compute party communication shares !α"i∗k , !β"i∗k , !v"i∗k by running the MPC protocol
on the sum of the witnesses of the N − 1 revealed leaf-party shares, as described
in Protocol 7.1 and add !α"i∗ , !β"i∗

Set !v"i∗ = −
∑

i′ '=i∗

!v"i∗

Step 5: Output the transcript
RSP1 = h′ = Hash(H1, . . . , HD)where Hk ← Protocol 7.4(!x", !Q", !P", !a", !b", !c", z, ϵ)
RSP2 = comi∗ , !α"i∗ , !β"i∗ , {(seedi1,...,iD , pi1,...,iD)∀(i1, . . . , iD) ↔= i∗1, . . . , i

∗
D)}

Return (Com, CH1, RSP1, CH2, RSP2)

Protocol 7.6: This protocol shows themode of operation of the simulator S described in the honest-verifier
zero-knowledge proof. This simulator creates a transcript of our SDitH protocol without know-
ing the secret x, which is indistinguishable from the transcript of an honest execution of our
SDitH protocol.

1(6

7.3 Security Proof

To establish the soundness of our SDitH protocol, we must show that a mali-
cious prover, without the knowledge of a solution x, is unlikely to convince an
honest verifier.

Proof sketch: Similar to the soundness proof of Section #.1.2, we follow the
soundness proof of the original SDitH paper [FJR22], but also orient ourselves
on the soundness proof of [AGH+22]. Our main differences from both papers
lie in the details of how we extract the witness. For this extraction, we run D

instances of the SDitH in parallel, where the party instance is shared using the
Small Integer Sharing. These shares are then rearranged into the hypercube
geometry and committed as part of the firstmessage. Themain difference be-
tween the approach from [AGH+22] and our approach are the auxiliary values.

The proof for the extraction follows the general idea that we can extract a wit-
ness x′ that satisfies H · x′ = y and wt(x′) ≤ w after seeing two accepting tran-
scripts that agree on the first commitments, but disagree on the second chal-
lenge. This is because we always open all but one share after the second chal-
lenge. By committing to the same secret shares and changing the hidden
share (second challenge), we ensure that all secret shares are opened through
both transcripts. This allows us to reconstruct the original witness. The remain-
ing argument is to show that this is sufficient for an extraction.

Instead of following the original soundness proof of the SDitH protocol, we will
follow the soundness proof of the hypercube geometry, which states that an
extraction is possible as long as the state and the communication of all parties
are verified in at least one accepting transcript. This follows from the general
hypercube geometry, which optimizes the verification process for the verifier
by reducing the number of MPC runs needed to prove that the prover knows
a good witness. Thus, by opening all but one commitment in each of the ac-
cepting transcripts, where the hidden party is different between the two tran-
scripts, we make sure that the hidden party is part of at least one main-party
that is verified in the other transcript. Here, we argue that the smaller vectors
of the leaf-parties used to generate the main-party shares still allow us to uti-
lize the extraction argument. The general idea is that the auxiliary values are
calculated on the extended sum of the main-party shares, allowing us to uti-
lize the main-party shares to extract the witness. Thus, by using the injective
deterministic hash function SH for the sum extension, we need to know the
opening of all shares to calculate the correct sum of main-party shares. After
that, we can extract the original witness by calculating the sum of the main-

1(7

7 Methodology

party shares of one dimension, extending it using the aforementioned hash
function, and adding the auxiliary value to it.

Soundness
Given the false positive probability p bound by Equation).1(, we can
construct an extraction function E , which produces a good witness x′,
if a malicious efficient prover P̃ with knowledge of the public parame-
ters of the SDitH protocol (H, y) can convince an honest verifier V with
probability:

ε̃ = Pr
[
〈P̃,V〉 → 1

]
> ε =

(
p+ (1− p) · 1

ND
H

)
(7.7)

The extracted good witness must satisfy H · x′ = y as well as wt(x′) ≤ w

and must be obtained by making an average number of calls to the
malicious prover of:

4

ε̃− ε ·
(
1 +

2 · ε̃ · ln(2)
ε̃− ε

)
(7.8)

Note that if a malicious prover cheats successfully with a probability
lower than ε, it is considered normal cheating, equivalent to randomly
guessing a correct solution.
Proof: Let us assume that the commitment scheme is perfectly bind-
ing. Then we have two transcripts with the same initial commitments
h = Hash(com1, . . . ,comND

H
,comaux), but different hidden leaf-party

shares i∗ ↔= j∗. This leaves us with two options:

• !x", !Q", !P" differ between the transcripts and, thus, one finds a
collision in the commitment hash

• Inboth transcripts, theopenings are the same, and thus !x", !Q", !P"
are equal in both transcripts as well

If we look at the second case, we can see that the witness can be recov-
ered from the two transcripts with i∗ ↔= j∗ and i∗, j∗ → [ND

H] because they
were generated with different challenge points from the verifier. This is
because, in the first transcript, the verifier receives ND

H − 1 opened leaf-
party shareswhere the i∗ leaf-party share remainshidden. In the second
transcript, the verifier also receivesND

H − 1 opened leaf-party shares, but

1(8

7.3 Security Proof

Soundness
the j∗ leaf-party share stays hidden this time. As thehidden shares differ
in both transcripts while the initial commits are the same, one receives
ND

H−1opened shares andcanextract thehidden leaf-party share i∗ from
the second transcript. Thus, one can access all opened leaf-party shares
and reconstruct the witness following the reconstruction described in
Section 7.1.2.
This implies that the extractor function E can obtain a good witness.
First of all, let us consider the hypercube geometry in which i∗ ↔= j∗

means that the corresponding list of indices in thehypercubediffer in at
least oneposition, such that (i∗1, . . . , i∗D) ↔= (j∗1 , . . . , j

∗
D). Thus, let us assume

that they differ in the first coordinate denoted as i∗k ↔= j∗k . We, therefore,
have two transcripts with different hidden main-party shares, where
both sums have been successfully verified. Furthermore, we know that
the verification is only successful if the sumof themain-party shares has
been successfully extended. This scenario closely resembles the proto-
col of [FJR22, AGH+22], and we can follow their structure of the sound-
ness proof.
We first need to show that in order to generate these two accepting
transcripts that contain the same initial commitments but with dif-
ferent challenge points in the second challenge, the witness must be
good. Furthermore, we need to define what makes a witness a good
witness. Recall that !x" is the sharing of x and each share of S is interpo-
lated over !x". Thus, a witness x is good if for !x", !Q", !P" the following
holds:

S ·Q = P · F

After this, we denote the random variable for the randomness of the
initial commits as Rh, and one value of this variable is denoted as rh. Ad-
ditionally, we call the execution of the entire protocol P̃ to obtain a first
successful transcript T1 the outer loop and the execution of the proto-
col on the same randomness to acquire a second successful transcript
T2 with a different hidden leaf-part but same initial commitments the
inner loop.
Now,we canexaminehow theextractor obtains the first successful tran-
scripts. For this, the extraction algorithm E follows the forking Lemma#.

1(’

7 Methodology

Soundness
By running the Protocol 7.1with P̃ and the honest verifier V until a suc-
cessful transcript T1 is found. This transcript utilized the randomness rh
for their commitments andhas i∗ as its second challenge. After that, the
process is repeated using the same randomness for the commitments
rh until a second successful transcript is found, with a different second
challenge j∗. Finally, the extractor derives the corresponding witness
and starts over if the witness is not a good one.
We further need to estimate the number of calls the extractor E makes
to the prover. For this, let α → (0, 1) be chosen such that (1 − α) · ε̃ ≥ ε

and we consider the randomness rh as ’good’ if it satisfies Pr[succP̃|rh] ≥
(1−α) · ε̃. The splitting Lemma 4 implies that we can transform this into
Pr[rh is good|succP̃] ≥ α. This entails that we can find a good witness
within about 1

α many transcripts.
Moreover, by the converse of Lemma 4, when rh is classified as good
meaning the probability (1 − α)ε̃ exceeds ε the initial commitment
within the transcript must necessarily encode a valid witness. Conse-
quently, thiswitnessmaybe reliably extracted fromanyother successful
transcript generated with the same randomness rh.
Let us assume we have a good transcript T1. We can now determine
a lower bound of the number of runs of the inner loop to obtain an-
other good transcript T2 that differs in the second challenge. For this,
our SDitH protocol is run on the same initial rh until a second good tran-
script T2 with i∗ ↔= j∗ is found. Thus, we can establish the lower bound to
obtain T2 as:

Pr[succP̃ ∩ i∗ ↔= j∗|rh good] = Pr[succP̃|rh good]− Pr[succP̃ ∩ i∗ = j∗|rh good]

≥ Pr[succP̃|rh good]−
1

ND
H

≥ (1− α) · ε̃− 1

ND
H

≥ (1− α) · ε̃− ε

Using this probability, we can identify howoften P̃needs tobe run (outer
loop) to obtain a second success transcript T2 with probability greater
than 1

2 . This transcript T2must have a different challenge leaf-party from

11(

7.3 Security Proof

Soundness
T1 but is generated with the same randomness as T1. The resulting
number of executions L of P̃ is:

L >
ln(2)

ln
(

1
1−((1−α)·ε̃−ε)

) 0 ln(2)

(1− α) · ε̃− ε (7.’)

Let us denote the number of expected calls from E to P̃ as EP̃. This
number of calls can be written as a recursive formula, in which firstly,
we have the probability of successfully obtaining the first transcript T1

(outer loop) as 1−Pr[succP̃] and secondly, the probability of acquiring the
second successful transcript T2 (inner loop) as 1

2 after L calls. We, there-
fore, have a mode of operation of the extraction algorithm E as follows:

1. Perform the initial call to P̃

2. Repeat step 1 if one does not find a successful transcript

). After finding a successful transcript T1, we know that rh is a good
randomness with a probability of α due to the splitting Lemma 4.
Thus, onemakes Lmany calls to the prover P̃ to obtain the second
transcript with probability 1

2 . If one does not find a second success-
ful transcript, return to step 1; otherwise, terminate.

4. Because one does not know that the randomness rh is bad (exe-
cuting P̃ on rh cannot yield a successful transcript) with a proba-
bility of 1 − α after the first transcript, she must perform L calls to
P̃. This shows whether she can obtain a successful transcript T2 or
not and prevents her from running into an endless recursion. If no
successful transcript was found after L calls, return to step 1.

However, this mode of operation does not provide an upper bound on
the number of calls E makes to P̃ (step 1). This is because if rh is a bad
randomness with probability 1− α, there is no guarantee that one finds
a successful transcript T2. We, therefore, denote this scenario as always
unsuccessful and thushave theprobability of findingno successful tran-
script T2 with a successful T1 of:

Pr[no T2|succP̃] = Pr[no T2|rh good] + Pr[no T2|rh bad] =
α

2
+ (1− α)

(7.1()

111

7 Methodology

Soundness
In this case, E returns to step 1, and we note the expected number of
calls EP̃ to P̃ as:

EP̃ ≤ 1 + (1− Pr[succP̃]) · EP̃︸ ︷︷ ︸
Not finding T1

+Pr[succP̃] ·
(
L+

(
1− α

2

)
· EP̃

)

︸ ︷︷ ︸
Finding T1

(7.11)

This can be reduced to

EP̃ ≤
2

α · ε̃ · (1 + L · ε̃) = 2

α · ε̃ ·
(
1 +

ε̃ · ln(2)
(1− α) · ε̃− ε

)
(7.12)

As the final step, we want to simplify the expected number of calls EP̃

in terms of only two key parameters: the soundness ε of the protocol
and the success probability ε̃ of a malicious prover convincing an hon-
est verifier. For this we define the probability (1 − α) · ε̃ as the midpoint
between ε and ε̃. This midpoint is a valid intermediate value that cap-
tures a balanced approximation between theworst-case success rate of
a malicious prover (ε̃) and the base soundness of the protocol (ε). Thus
we get (1 − α) · ε̃ = 1

2 · (ε̃ + ε) and transform Equation 7.12 to get the
following upper bound for the expected number of calls from E to P̃ as:

EP̃ ≤
4

ε̃− ε ·
(
1 +

2 · ε̃ · ln(2)
ε̃− ε

)
(7.1))

This concludes the security proof of our protocol, where we demonstrated the
security properties of our SDitH protocol by analyzing its completeness, HVZK,
and soundness characteristics. We first defined the abort events in Definition
7.) and quantified their probability, ensuring that protocol termination does
not reveal information about the secret. We then proved the protocol’s perfect
completeness, showing that an honest prover will be accepted by an honest
verifier with probability 1 − Pr[abort]. Additionally, we constructed a simula-
tor to confirm the protocol’s honest-verifier zero-knowledge (HVZK) property,
ensuring no witness information leakage under an honest verifier. For sound-
ness, we established that a malicious prover without a valid witness has a suc-
cess probability bounded by ε = p + 1−p

ND
H
. Finally, we analyzed the expected

calls to a malicious prover, showing that extraction is efficient within the pro-
tocol’s security limits. Together, these results affirm the protocol’s robustness

112

7.3 Security Proof

against adversaries while preserving zero-knowledge guarantees. From this,
we dive into the communication and computational cost discussion, where
we compare our SDitH protocol to the original SDitH protocol [FJR21] and the
optimized implementationof [AGH+22]. After that, wegive anoverviewof pos-
sible future work.

11)

’ Discussion

In this section, we compare our optimization to current state-of-the-art imple-
mentations regarding communication and computational costs. To visualize
the improvements of the different optimizations, we first provide a commu-
nication costs baseline in the next paragraph and add the modifications de-
scribed in Section 7 until we reach our final Protocol 7.1. Then, we compare
our protocol to the implementation from [AGH+22], whichuses thehypercube
geometry. Here, it is important to note that the paper [BB24] does mention
the SDitH with the hypercube geometry and the OneTree structure but fo-
cuses on VolE-based implementations. It does not provide the communica-
tion costs for the SDitH implementation. Furthermore, they do not give the ef-
fectiveness of the OneTree structure, which we showed in Equation 6.1. This is
whywe use the communication costs from [AGH+22] instead. Additionally, we
will assign the values from the hypercube paper [AGH+22] to the parameters
marked Original for the communication costs, and utilize the values marked
Comp for the computational. These parameters are denoted in the tables 8.1,
8.2. We also implemented a proof of concept in Python that could not run for
the original parameter values in a reasonable time. This is the reason for the
difference between the communication and computational variants. Further-
more, as we discuss later in this section, we do not need to utilize larger values
to see the difference between the implementations.

Table 8.1: The SD and MPC parameters for our protocol, where the values for
Original aremostly taken from [AGH+22] and theComp are smaller
parameters for reasonable execution times.

Scheme SD Parameters MPC Parameters

SD m k w |Fpoly| |Fpoints| t p

Original 2 1 280 640 132 213 226 6 ≈ 2−69

Comp 2 32 16 8 213 226 6 ≈ 2−69

11#

8 Discussion

Table 8.2: The rest of the SDitH parameters based on [AGH+22].

Scheme Parameters

N NH D τ λ A sm

Original 256 2 8 17 128 213 10

Comp 32 2 5 1 128 213 10

’.1 Communication Cost Analysis

For the baseline of communication costs, we take the additive secret sharing
from Section).6, which has the biggest impact on the communication costs
ofMPCitHprotocols. This AddSS samplesN−1uniformly randomvectors !x"i →
Fm
SD and calculates the final share via !x"N = x−

∑N
i=1−1 → Fm

SD . After that, theN

shares are communicated, where each share is a m long vector that contains
elements from FSD . Each of these elements is encoded into bits, leading to
log2(SD). Thus, we need a vector of length m, where each element in FSD is in
its bit representation costing log2(SD). The resulting communication cost for
the secret sharing is as follows:

costssharing = N · log2(SD) ·m bits

In addition to the communication costs of the secret sharing, we need to ac-
count for sending the auxiliary values of the polynomials !Q"N , !P"N = (2 · w) ·
log2(|Fpoly|), the beaver triples {!αj"i∗ , !βj"i∗ , !vj"N} = (2 · t) · log2(|Fpoly|), as well as
the hidden commitment comi∗ = 2 · λ. We also need the two sent hashes h

and h′, which are each 2 · λ. Furthermore, we need to send all this τ times for
each execution of the SDitH protocol, resulting in the following baseline for the
communication costs of the original SDitH protocol from [FJR22]:

costssharing = 4 · λ+ τ · (N · log2(SD) ·m+ (2 · w) · log2(|Fpoly|)

+ (3 · t) · log2(|Fpoints|) + 2 · λ) bits

Fromthis, weget thebaseline communication costs for secret sharingbyplug-

116

8.1 Communication Cost Analysis

ging in the Original values for the parameters of:

costssharing = 4 · 128 + τ · (256 · log2(2) · 1 280 + (2 · 132) · log2(211)

+ (3 · 6) · log2(222) + 2 · 128) bits

= 3943 941 bits

If we look at the additive aspect of secret sharing in the cost function, we can
see that it uses 256 · log2(2) ·1 280 = 227 130 bits. We can improve this by exchang-
ing it with our first optimization, the small integer secret sharing for syndrome
decoding as described in 7.1.1. This uses N · sm · log2(A − 1) + m, where sm is
the length of the shorter shares and A is the security parameter, defining the
size of the number space used to sample the shares uniformly. In this case,
A is chosen as 213 because to map between the different number spaces, we
need to make sure that they are multiples of each other. Thus, we need to in-
crease the number space of the challenge points from 222 to 226 and the num-
ber space of the polynomials tomatch A. Thus, increasing A to achieve a lower
rejection rate than 0.02 (for A = 213) would significantly increase the cost of
communication. Larger A affects the length of the sharings, which must en-
sure a low probability of random guessing. We define the length sm of a share
as sm = λ

q = 128
13 ≈ 10, which ensures that each share has a probability of being

correctly guessed by an attacker of A−sm = 213·(−10) ≥ 2−128. The communica-
tion costs of the Small Integer Sharing on the syndromedecodingproblemare
therefore 256 · 12813 · log2(213)+1 280 = 34 048 bits. This is 6.67 times smaller than the
additive secret sharing baseline. In addition, we utilize the structure of the syn-
drome decoding matrix H, which can be represented by H = (H′|Im−k), which
in turn allows us to carry out the protocol on the smaller part of x, namely xA

as described in Section).1(. The resulting communication costs using SIS are
the following:

costscomm = 4 · λ+ τ · (N · sm · log2(A− 1) + k · log2(|FSD|) + (2 · w) · log2(|Fpoly|)

+ (3 · t) · log2(|Fpoints|) + 2 · λ) bits

= 4 · 128 + τ · (256 · 128
13

· log2(213) + 640 · log2(2) + (2 · 132) · log2(213)

+ (3 · 6) · log2(226) + 2 · 128) bits

= 454 795 bits

117

8 Discussion

Looking at this communication cost, we can see that SIS optimization reduces
the communication cost of the baseline (3 943 941 bits) by a factor of approx-
imately 8.7. The second optimization of our protocol, namely the rearrange-
ment of the shares into the hypercube structure, does not impact the com-
munication costs. However, by combining it with the Small Integer Sharing,
we send the shares for α and β (!α"(i∗1,...,i∗D), !β"(i∗1,...,i∗D)) in the smaller FA space
instead of Fpoints. Nevertheless, in order for us to utilize the SIS in combination
with the hypercube scheme, we need to perform the protocol over x again.
Furthermore, note that by using the hypercube structure, shares are called
leaf-party shares, and the number of leaf-party shares is denoted asND

H instead
of N , where ND

H = N . The communication costs, therefore, change to:

costscomm = 4 · λ+ τ · (ND
H · sm · log2(A− 1) +m+ (2 · w) · log2(|Fpoly|)

+ (2 · t) · log2(|FA|) + t · log2(|Fpoints|) + 2 · λ)

= 4 · 128 + τ · (256 · 128
16

· log2(213) + 1 280 + (2 · 132) · log2(213)

+ (2 · 6) · log2(213) + 6 · log2(226) + 2 · 128)

= 452 551 bits

After this, we can integrate our final optimization, which we split into two parts
to visualize the impact of the optimization better. The first aspect is utilizing
the GGM tree-based pseudo-random generators. These allow us to send only
the sibling paths, which reduces the number of shares sent to log2(N) instead
of N . In addition, this significantly reduces the effectiveness of the Small In-
teger Sharing on the communication costs because no individual shares are
sent to the verifier but only the seeds of the GGM tree. These seeds are of
length λ (|seed| = λ). This is not considerably cheaper than our sharing with
sm · log2(A) = 10 · log2(213) = 130 on a sharing level (λ = 128), but allows us to
send fewer shares and add the last optimization in the next paragraph. The
resulting communication costs can be seen in the next equation.

118

8.# Computational Cost Analysis

costscomm = 4 · λ+ τ · (log2(ND
H) · λ+m · log2(FSD) + (2 · w) · log2(|Fpoly|)

+ (2 · t) · log2(|Fpoly|) + 2 · λ)

= 4 · 128 + τ · (log2(256) · log2(213) + 1 280 · log2(2) + (2 · 132) · log2(213)

+ (2 · 6) · log2(226) + 2 · 128)

= 127 338 bits

As we can see, by sending the sibling path of the GGM tree, we reduce the
number of shares that need to be sent drastically and also reduce the cost
of sending each share, which results in a significant improvement. Next, we
further reduce the number of nodes that need to be sent using the OneTree
strategy, which allows the prover to send about 60% of the sibling path nodes
overall τ executions. Our final communication costs are, therefore:

costscomm = 4 · λ+ 0.6 · (τ · (log2(ND
H) · λ) + τ · (m · log2(FSD) + (2 · w) · log2(|Fpoly|)

+ (2 · t) · log2(|Fpoly|) + 2 · λ)

= 4 · 128 + 0.6 · (17 · (log2(256) · log2(213)) + 1 280 · log2(2) + (2 · 132) · log2(213)

+ (2 · 6) · log2(226) + 2 · 128)

= 99 190 bits

Let us compare the final communication costs to the original syndrome de-
coding in the head protocol with additive secret sharing (baseline). We get an
improvement by a factor of approximately 40, which brings the effectiveness
of the entire protocol to a competitive area. From here, we will dive into the
computational costs, which will show the improvements of our protocol com-
pared to the original SDitH protocol with additive secret sharing and the SDitH
with the hypercube scheme, where the latter is close to our protocol in terms
of communication costs (99 190 bits to 90 214 bits).

’.2 Computational Cost Analysis

For the computational cost analysis, we implemented a version of the original
SDitH with additive secret sharing, the hypercube-based SDitH with the same

11’

8 Discussion

Table 8.): This table shows the execution times of the three different protocols:
1) SDitH with AddSS, 2) SDitH with AddSS and hypercube structure,
3) our SDitH, for our Python implementation in seconds, for different
runs as well as on average. We utilized the parameter setting Comp
provided in Table 8.2 for this.

Protocol Runs Average

1 2 3 4 5

Original SDitH 47.60 48.66 48.69 48.05 47.08 48.02
Hypercube SDitH 4.84 3.72 3.85 4.90 4.25 4.31
SIS Hypercube SDitH 2.89 1.89 2.44 1.67 1.69 2.12

sharing, and our protocol in Python, using the mathematical software system
Sagemath for Python [Sag]. Sagemath allows us to execute the protocol on
prime finite fields, which is needed to ensure the correct mode of operation.
However, these prime fields significantly impact the execution speed, as every
number is represented by a polynomial, which is less optimized, especially in
Python. This slowdown is the reason for the small values of the parameters
used in the computational cost analysis, shown in Table 8.1 under Comp. At
this point, it is important tonote that the implementation is not optimized, and
we do not recommend a Python implementation of any of these protocols for
practical usage. The implementation is merely a means to demonstrate the
different computation times and highlight the improvements they provide.
We raneachprotocol five times tohave statistically relevant results and recorded
the execution time. After that, we calculated their averages for better compar-
ison. These results can be seen in Table 8.).
Looking at the average execution times, we can see that the integration of the
hypercube structure reduces the computational costs by a factor of approx-
imately 10, which is on par with the findings of the corresponding paper by
Aguilar-Melchor et al. [AGH+22]. Furthermore, we can see that our approach
is about 2 times faster than the SDitH protocol with the hypercube structure
and AddSS. This is because the shares used for the hypercube construction
and, consequently, for executing the MPC protocol in round 2 of the prover
and the verification round of the verifier are sm = λ/q long. Here q is the power
of the number space for the shares A = 2q , instead of k long with k = |xA|. The
only values that are dependent on the length of the secret x are the initial poly-
nomials S,Q,P,F, and the auxiliary values. This, in turn, means that in contrast

12(

8.# Computational Cost Analysis

Table 8.4: This table shows the execution times of the SDitH protocol with
AddSS and the hypercube structure and our protocol on a larger pa-
rameter setting in seconds, namely m = 256, k = 128 and w = 32, in
order to show the slower rising computational times regarding the
length of the secret x.

Protocol Runs Average

1 2 3 4 5

Hypercube SDitH 112.38 115.17 120.47 114.22 117.56 115.96
SIS Hypercube SDitH 31.96 38.19 40.63 35.69 34.14 36.12

to thehypercube SDitHprotocol, ours scales betterwith the size of x and allows
us to achieve reasonable execution times evenwith amore realistic parameter
setting.

We show this by running both implementations with m = 256, k = 128, and
w = 32, which can be seen in Table 8.4. These results show that the improve-
ment of our protocol increases from a factor 2 to a factor 3.25 reduction in com-
putational costs. Furthermore, using the Python c profiler, we see that the ini-
tial interpolation of x to obtain the polynomial S has the highest impact on
execution time because we use the Lagrange interpolation, which is prone to
be slow. Note that any interpolation algorithm creates significant overhead in
terms of computational costs.

In this section, we analyzed our protocol’s communication and computational
costs compared to different SDitH implementations. To illustrate the impact
of each optimization, we began by establishing a baseline for communication
costs and then incrementally applied the enhancements introduced in Sec-
tion 7, until we reach our final Protocol 7.1. For this, we use the parameters
from [AGH+22] to ensure a consistent basis for comparison. After that, we
compare our protocol to the original SDitH protocol and the SDitH protocol
with the hypercube structure regarding their computational costs. For this,
we implemented a proof-of-concept in Python and executed each protocol
multiple times on a smaller parameter setting.

Our findings demonstrate that our protocol achieves an approximately 40-fold
reduction in communication costs compared to the original SDitH protocol
while also outperforming previous implementations in computational effi-
ciency, particularly for larger parameter sets by a factor of 3.25. This reduction

121

8 Discussion

is achieved by combining the SDitH protocol with the SIS and the hypercube
structure, allowing us to handle larger secrets with minimal additional cost.
With all this in mind, we will dive into further possible improvements to our
protocol.

’.3 Future Work

Firstly, communication costs could be further reduced using half-tree pseudo-
number generators introduced by [GYW+22] to furtherminimize the number
of sent nodes. Another interesting question would be whether the Small Inte-
ger Sharing is compatiblewith the VOLEproblem, which is another alternative
to the syndrome decoding problem. And lastly, one could try to reduce the re-
jection rate of our protocol or even get rid of it to allow for a smaller A. This
would also scale down the size of Fpoly and Fpoints, thus improving the commu-
nication and computational cost.

122

(Conclusion

In this thesis, we introduced a novel approach to optimize the performance
of syndrome decoding in a zero-knowledge proof system, focusing on using
Small Integer Sharing (SIS) and hypercube structures. Through careful per-
formance analysis, we demonstrated that the proposed method significantly
reduces computational overhead through our proof-of-concept implementa-
tion, achieving a doubled improvement in efficiency for small parameters and
up to factor 3.25 for more realistic parameter settings compared to the state-
of-the-art SDitH with the hypercube structure by [AGH+22]. In addition, we
showed that our protocol achieves a factor 40 improvement in communica-
tion costs compared to the original SDitH protocol from [FJR22] and is on par
with the state-of-the-art SDitH protocol of [AGH+22].
To achieve this, we presented and combined several enhancements to the
original SDitH protocol, such as integrating the hypercube structure to reor-
ganize share distribution, utilizing the OneTree architecture, and employing
an SIS strategy to minimize the length of the secret shares. These optimiza-
tions reduced the required operations, particularly in larger instances, making
the protocol more scalable.
Futurework should investigate additional strategies to reduce communication
costs, such as incorporating pseudo-number generators like half-tree PRG or
exploring compatibility with other cryptographic problems like VOLE. These
improvements would further enhance the protocol’s practical applicability in
real-world settings.
In conclusion, this thesis contributes to the field of efficient zero-knowledge
proofs by introducing both theoretical advancements and practical tech-
niques for syndrome decoding optimization, opening avenues for future re-
search and implementation.

12)

Bibliography

[AABN(2] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Nam-
prempre. From Identification to Signatures via the Fiat-Shamir
Transform: Minimizing Assumptions for Security and Forward-
Security, 2((2.

[AGH+22] Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas Hüls-
ing, David Joseph, andDongze Yue. The Return of the SDitH,2(22.

[BB24] Carsten Baum and Ward Beullens. One Tree to Rule Them All -
Optimizing GGM Trees and OWFs for Post-Quantum Signatures.
Cryptology ePrint Archive, 2(24.

[BBC+1’] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo
Pelosi, and Paolo Santini. A Finite Regime Analysis of Information
Set Decoding Algorithms. Algorithms, 12(1():2(’, October 2(1’.

[BBM+24] Carsten Baum, Ward Beullens, Shibam Mukherjee, Emmanuela
Orsini, Sebastian Ramacher, Christian Rechberger, Lawrence Roy,
andPeter Scholl. One Tree to Rule ThemAll: OptimizingGGMTrees
and OWFs for Post-Quantum Signatures, 2(24.

[Bea’2] Donald Beaver. Efficient Multiparty Protocols Using Circuit Ran-
domization. In Joan Feigenbaum, editor, Advances in Cryptology
— CRYPTO ’91, Lecture Notes in Computer Science, pages 42(–
4)2, Berlin, Heidelberg, 1’’2. Springer.

[BMVT78] E. Berlekamp, R. McEliece, and H. Van Tilborg. On the inherent
intractability of certain coding problems (Corresp.). IEEE Transac-
tions on Information Theory, 24()):)84–)86, May 1’78.

[BN1’] Carsten Baum and Ariel Nof. Concretely-Efficient Zero-Knowledge
Arguments for Arithmetic Circuits and Their Application to Lattice-
Based Cryptography, 2(1’.

[Che24] Yilei Chen. Quantum Algorithms for Lattice Problems, 2(24.

12#

Bibliography

[CTS16] Rodolfo Canto Torres and Nicolas Sendrier. Analysis of Information
Set Decoding for a Sub-linear Error Weight. In Tsuyoshi Takagi, ed-
itor, Post-QuantumCryptography, volume ’6(6, pages 144–161.
Springer International Publishing, Cham, 2(16.

[DGV+16] Özgür Dagdelen, David Galindo, Pascal Véron, Sidi Mohamed
El Yousfi Alaoui, and Pierre-Louis Cayrel. Extended security argu-
ments for signature schemes. Designs, Codes and Cryptography,
78(2):441–461, February 2(16.

[FJR21] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared Per-
mutation for Syndrome Decoding: New Zero-Knowledge Protocol
and Code-Based Signature, 2(21.

[FJR22] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome
Decoding in the Head: Shorter Signatures from Zero-Knowledge
Proofs, 2(22.

[FMRV22] Thibauld Feneuil, Jules Maire, Matthieu Rivain, and Damien
Vergnaud. Zero-Knowledge Protocols for the Subset SumProblem
fromMPC-in-the-Head with Rejection, 2(22.

[FS(6] Amos Fiat and Adi Shamir. How To Prove Yourself: Practical So-
lutions to Identification and Signature Problems. In Andrew M.
Odlyzko, editor, Advances in Cryptology — CRYPTO’ 8’, volume
26), pages 186–1’4. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2((6.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to con-
struct random functions. Journal of the ACM,))(4):7’2–8(7, Au-
gust 1’86.

[Gou(1] Louis Goubin. A soundmethod for switchingbetweenboolean and
arithmetic masking. In Çetin K. Koç, David Naccache, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems
CHES #((1, volume 2162, pages)–1#. Springer Berlin Heidel-
berg, 2((1. Series Title: Lecture Notes in Computer Science.

[GYW+22] Xiaojie Guo, Kang Yang, Xiao Wang, Wenhao Zhang, Xiang Xie,
Jiang Zhang, and Zheli Liu. Half-Tree: Halving the Cost of Tree Ex-
pansion in COT and DPF, 2(22.

126

Bibliography

[IKOS(7] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In Proceedings
of the Thirty-Ninth Annual ACMSymposiumon Theory of Comput-
ing, STOC ’(7, page21)(, NewYork, NY, USA,2((7. Association for
Computing Machinery.

[KZ2(] Daniel Kales and Greg Zaverucha. An Attack on Some Signa-
ture SchemesConstructed FromFive-Pass Identification Schemes,
2(2(.

[KZ22] Daniel Kales and Greg Zaverucha. Efficient Lifting for Shorter Zero-
Knowledge Proofs and Post-Quantum Signatures, 2(22.

[LN17] Yehuda Lindell and Ariel Nof. A Framework for Constructing Fast
MPC over Arithmetic Circuits with Malicious Adversaries and an
Honest-Majority, 2(17.

[PS((] David Pointcheval and Jacques Stern. Security Arguments for
Digital Signatures and Blind Signatures. Journal of Cryptology,
1)()):)61–)’6, June 2(((.

[Sag] Sage. SageMath Mathematical Software System - Sage.
https://www.sagemath.org/.

[VG2)] MadhuSudanVenkatesanGuruswami, Atri Rudra. Essential coding
theory, 2(2).

127

