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Abstract

Machine learning is achieving better and better results in activity recognition. However,
these models implicitly store information about their training data, which can lead to
data leakage. In this work, a versatile approach for recognizing activities of daily living
based on rank pooling, which is highly vulnerable to membership inference attacks,
was made robust against these attacks. In doing so, the support vector regression
used was designed to be differentially private. Although the dataset used is difficult
to classify, this work achieves very good results. With the methods used, it is possible
to reduce the success rate of the attack by 71.44% while the accuracy is reduced by
only 12.07%. In the experiments, Objective Perturbation was shown to perform better.
Furthermore, support vector machines with differential privacy were investigated, here,
it was shown that the previous approaches do not achieve satisfactory results on the
data set used.

Kurzfassung

Machine Learning erzielt in der Aktivitätserkennung immer bessere Ergebnisse. Je-
doch speichern diese Modelle implizit Informationen über ihre Trainingsdaten, was zu
einem Datenleck führen kann. Im Rahmen dieser Arbeit wurde ein vielsprechender
Ansatz zur Erkennung von Aktivitäten des täglichen Lebens basierend auf Rankpool-
ing, welcher stark anfällig für Membership Inference Attacks ist, robust gegen diese An-
griffe gemacht. Dabei wurde die eingesetzte Support Vector Regression Differentially
Private gestaltet. Obwohl der genutzte Datensatz nur schwer klassifizierbar ist, erzielt
diese Arbeit sehr gute Ergebnisse. Mit den eingesetzten Methoden ist es möglich die
Erfolgsrate des Angriffes um 71.44% zu reduzieren während die die Genauigkeit nur
um 12.07% gesenkt wird. In den Experimenten hat sich gezeigt, dass die Objective
Perturbation etwas besser funktioniert. Im Weiteren wurden Support Vector Machines
mit Differential Privacy untersucht, hier zeigte sich, dass die bisherigen Ansätze keine
zufrieden stellenden Ergebnisse auf dem genutzten Datensatz erzielen.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

The age distribution of the world population is increasingly shifting towards elderly
people [1]. An increased age leads to new challenges in life. Firstly, elderly people want
to stay as independent as possible, which leads to the conflict that a balance between
independence and provided aid has to be found. To achieve this, it is necessary to
measure the independence of an elderly person. Germany has such a system which ex-
presses the required help of a person to cope the day. It is called level of care. However,
the assessment in this system is a time-consuming task. An automatic system which
can undertake some parts of this assignment would be a beneficial assistance, not only
for elderly people but also for the healthcare people who make this assignment.
Another challenge, which is caused by the aging of the population and the wish of
elderly people, is the risk of injury. One of the most crucial problems for elderly people
is the risk of falling. Falling in your daily life is not really dangerous for younger people
as they still have the reflexes to cushion the fall. However, with increased age, these
reflexes become slower and the risk for injury increases. If a fall has happened, it is
important that medical assistance comes in a short amount of time. Elderly people
who have fallen and injured themselves often can not call for this medical assistance as
their injury prohibits them from doing so. A system which can automatically identify
a fall and call for assistance enhances the life quality for elderly people.

There are promising research results in activity recognition [2] and the detection of
falling [3]. Most of the promising results in those areas are received through machine
learning (ML). ML can achieve sufficient results if the used training data has a good
quality and quantity. The results of ML heavily depend on the used training data. In
general, the more data is available the higher is the chance that the model generalizes
well. However, ML methods learn implicitly information from the training data, which
they can leak if no countermeasures are implemented. This is especially an issue if the
training data contains sensible data. An attacker can extract this learned information
out of the ML model. In the scope of medical data this is an serious issue as mostly
all data used for training is highly sensible. This leads to several problems. Publishing
novel approaches in the area of ML is problematic as these models can leak information.
Furthermore, it prohibits the usage of promising ML models in a real world scenario.
It does not only prohibit the usage from an ethical standpoint but also from an legal
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1 Introduction

standpoint [4]. Security of data is nowadays required by law which products have to
satisfy. Therefore, these models have to be modified in a way that they cannot leak
information. Privacy-preserving machine learning (PPML) tries to close this gap [5].
PPML has to protect the training data which not only enables the publishing of novel
techniques but also prepares the way for deployment which ultimately can help people
in their life [6].

One of the most used ML algorithms is the Support Vector Machine (SVM). It is
a classifier which can work really well in many scenarios and often does not require a
great amount of training samples. Many frameworks are relying on the libsvm frame-
work [7] to provide an SVM. This implementation is fast and accurate. However, it is
vulnerable to malicious attacks. For example, the membership inference attack (MIA)
by Salem et al. [8] which has an accuracy up to 84% on the Cognitive Village (CogAge)
Dataset. With this accuracy, the libsvm implementation is not suitable for sensitive
data as it leaks a great amount of its information. In general, SVMs are very vulnerable
to the extraction of information from them [9].

1.2 Contribution of this work

This work extends the work by Nisar et al. [10] which showed promising results in the
recognition of activities of daily living (ADL) by taking the presented approach and
extending it by differential privacy. The approach is highly vulnerable to a MIA which
achieves an accuracy of 84%. It means nearly all training samples can be identified for
an attacker.
Providing a differential privacy approach one step closer to being used in daily life as
preserving the privacy of users is required by federal law. This work evaluates different
options to provide differential privacy. The main focus of the evaluation is the trade-off
between utility and protection. Therefore, it is desired to achieve an accuracy which
is as close as possible to the presented work by Nisar et al. [10] while still protecting
the data.
The data set is difficult to classify as the reference approach by Nisar et al. [10] achieves
only an accuracy of 63.64%. Therefore, it is difficult to provide differential privacy
without dropping the accuracy that much that it is not usable anymore. This work
achieves this trade-off between accuracy and protection as it drops the MIA accuracy
by 31% to 57.95% accuracy which is nearly nonfunctional. In contrast, the accuracy
only drops by 13% to 55.31%. Improvement in both areas is achieved by implementing
a differentially private Support Vector Regression (SVR). Differential privacy for SVM
has also been evaluated but has not shown similar promising results.
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1.3 Overview

1.3 Overview

This work explains in Chapter 2 the theoretical basics of the used ML techniques and
a brief introduction to differential privacy.
Chapter 3 sets its focus on the security evaluation of the proposed approach by Nisar
et al. [10] and the implementation of differentially private algorithms which are also
introduced in that chapter. There are three algorithms:

1. Output perturbation. An approach which perturbs the output of the classifier
with noise.

2. Objective perturbation. This approach perturbs the optimization function itself
and therefore adds noise not only after training but also during the training
phase.

3. Minibatch Stochastic Gradient Descent. A gradient descent based SVM which
is trained with differential privacy gradient descent. This approach also explains
how the SVM is transformed into a gradient descent problem.

The following Chapters 4 and 5 evaluate these algorithms and assess them.

1.4 Related Work

Preserving privacy is crucial in many cases. Even if it does not look like at first glance,
there is information that can be gained from data that can leak sensitive information
about the subject. For example, eye tracking is an interesting area for virtual reality. It
can reduce the amount needed computation power as the scene has only been rendered
at the area the user is looking at. On the other side eye-tracking can be used to
improve user interfaces as the developer can get information through eye tracking,
like, for example, which are the areas where a user is mostly looking at. On the first
glance, having information about the eye movement of a single subject seems harmless.
However, eye movement is linked to mental disorders like Alzheimer’s or Parkinson’s.
Extracting this information out of the data is not something anyone who took part in
data acquisition would like to share. Steil et al. [11] presented in their work a privacy
preserving method, which tracks the eye movement and achieves sufficient accuracy
while preserving privacy.
Zhang et al. [12] presented a differential privacy support vector machine (SVM) which
uses the sequential optimization algorithm to optimize itself. The advantage of this
approach it provides a differential privacy SVM while using its fastest optimization
algorithm.
One of the first differential privacy SVM was presented by Rubinstein et al. [13]. It
showed that an SVM can provide differential privacy without any restrictions which
kernel functions can be used. This is an important finding, as the usage of different
kernel functions to classify nonlinear data is one of the key advantages of an SVM.
Differential privacy for convolutional deep belief networks for human behavior modeling
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1 Introduction

was presented by Phan et al. [14]. It showed that choosing an ε < 0.8 carries a large
accuracy loss. However, the differentially private approach still achieves an accuracy
of 75% for ε = 0.5 but the used data set is not very difficult to classify.
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Chapter 2

Fundamentals

2.1 Machine Learning

ML is the training of a system to deal with unseen data. Therefore, it is a part of
artificial intelligence. It can be used for numerous application scenarios, such as clas-
sification, pattern recognition, or translation [15].
ML can be divided into two classes, supervised techniques and unsupervised techniques.
Supervised techniques train a system on labeled training data which then can deal with
unknown data. The accuracy of these systems is heavily depending on the quality of
the training data. Due to the high increase in computation power in recent years,
ML has gained interest in many different use cases. For example, the majority of the
proposed methods for sensor-based activity recognition are based on ML [2].

2.1.1 Support Vector Machine

An SVM is a classifier based on supervised ML. Firstly published in 1995 [16, 17], SVMs
have since gained high popularity in several fields of areas like pattern recognition [18],
image classification [19] or computational biology [20].
To classify data in a binary classification task, an SVM is searching for a hyperplane
which separates the data points into two parts. This hyperplane can be represented as
follows:

h(x) = wTx+ b (2.1)

In Equation 2.1 the hyperplane is represented by the SVM’s weights w and SVM’s
bias b. Multiplying the weights with a point x and adding the bias b results in a floating
number which reflects the position of the point x on the hyperplane. If h(x) = 0 then
x lies on the hyperplane otherwise x falls on either side of the hyperplane depending on
the sign. As this output value reflects the distance of the point to the hyperplane, the
value can also be interpreted as a confidence value. A big distance from the hyperplane
can be interpreted as a high confidence that this point belongs to the corresponding
class. However, if a good degree of certainty is wanted, the SVM has to be calibrated
via Platt Scaling [21] (see Section 2.1.3) to do so.
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2 Fundamentals

Since there is a theoretically indefinite number of possible hyperplanes which fulfill
the requirement of separating the two classes, an SVM is searching for the optimal
hyperplane. To do so, the SVM is trying to maximize the distance between the hy-
perplane and the outliers of each class. These outliers are called support vectors. The
distance between the hyperplane and the support vectors is named as the margin. A
standard SVM has a margin of 1, therefore the following equation counts for data
points:

wTxi − b = 1 if yi = 1

wTxi − b = −1 if yi = −1
(2.2)

In Equation 2.2 w and b represent the SVM’s weights and bias, whereas xi and yi
represent the i-th data point and its corresponding class label. Equation 2.2 can be
transformed into one inequality:

yi(w
Txi + b) ≥ 1 (2.3)

Since the goal of an SVM is to find the best hyperplane, it maximizes the margin.
Using Equation 2.3 this can be expressed as:

min
||w2||

2
s.t Linear Constraint: yi(w

Txi + b) ≥ 1
(2.4)

This form of an SVM is also called the hardmargin SVM as it purely tries to maxi-
mize the margin between the hyperplane and the points. Furthermore, this is a convex
optimization problem, which is a necessity for the privacy guarantees in Section 2.3.

However, a hardmargin SVM can only deal with linear separable data. Since most
real world data is not linearly separable, some adjustments have to be made to work
with that nonlinearity. Cortes and Vapnik [17] proposed several techniques to imple-
ment a nonlinear SVM. The first proposition is the introduction of a slack variable ξ
to create a so-called softmargin SVM for Equation 2.3:

yi(w
Txi + b) ≥ 1− ξi ξi ≥ 0 (2.5)

The slack variable ξi allows a data point xi to violate the margin. This introduction
makes it possible to change the hardmargin optimization problem in Equation 2.4 to
the softmargin optimization problem:

min
||w2||

2
+ C

N∑
i

ξi

s.t Linear Constraint: yi(w
Txi+b) ≥ 1− ξi

(2.6)

In Equation 2.6 the parameter C defines the influence of the slack variables and must
satisfy the condition C > 0. If C → 0, the softmargin SVM becomes a hardmargin
SVM like in Equation 2.4. If C → ∞, the margin has no effect and the constraint
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2.1 Machine Learning

dominates the equation. This can be interpreted as a loss function, as it maps the miss
classification to a floating number. Therefore, C is a hyperparameter of the softmargin
SVM and has to be set according to the data set. However, in most cases C = 1.0
performs sufficient.

By looking at Equation 2.5, it can be seen that only data points, where yi(w
Txi+b) <

1, carry a loss as they require a ξi > 0 to satisfy the linear constraint in Equation 2.6.
Therefore, Equation 2.5 can be rewritten as the so-called hinge loss [22]:

L(x) = max(0, 1− yi(wTxi + b)) (2.7)

To calculate the loss, the data point xi is multiplied with the weight w, some bias b
is added and the result is afterwards multiplied with the class label, which in a binary
SVM is either −1 or 1. If the data point is on the correct side of the hyperplane, only
a small loss is added for points with a distance smaller than 1 to the hyperplane. Data
points with a distance greater than 1 on the correct side of the hyperplane do not carry
a loss. Data points on the wrong side of the hyperplane have a linear increasing loss
regarding their distance to the hyperplane.

Figure 2.1: A graphical example of a softmargin SVM with C = 1.0. The hyper-
plane is colored in blue, the margins are dotted. There are some miss-
classifications which are allowed in a softmargin SVM, since this data is
not linearly separable. Points with a black edging are the support vectors.

Another approach to deal with nonlinear data is its transformation into a higher
dimensional space where it can be separated. There are several different kernels to
achieve this objective, with the most popular one being the Radial Basis Function.
This kernel has a very good projection into higher dimensional space. However, it
comes with a cost of an increase not only in the form of computation but also in the
number of hyperparameters.
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2 Fundamentals

2.1.2 Multiclass Support Vector Machine

Originally, Support Vector Machines were designed only for binary classification. How-
ever, many real world use cases are multiclass classification problems. There are some
approaches for using SVM in multiclass classification: The two most commonly used
approaches are the One-vs-Rest (OvR) classification [23] and the One-vs-One (OvO)
classification [24]. For example, LibSVM, which is the reference SVM implementation
and is internally used by many SVM frameworks, provides for multiclass classification
OvR and OvO [7]. Even though both approaches were originally introduced for differ-
ent classifiers, it was shown in [25, 26], they can also be used for SVMs .
In OvR classification for each class a binary SVM is trained where the corresponding
class is labeled as 1, and all the samples, which do not belong in this class, are labeled
as −1. The prediction is based on a winner-takes-it-all approach. This means the
highest positive output is selected as the winner. This is caused by the fact that the
distance can be interpreted as how well a data point fits in this class. The greater the
distance is, the better the data point fit in this class. In a rare case, when all SVMs
predict negative distances and the sample falls in the rest category, the class with the
smallest negative output is selected. The advantage of this approach is that it trains as
many SVMs as class labels and is therefore, especially for scenarios with many classes,
efficient in its computational time.
In contrast, OvO classification trains for each class combination a binary SVM. This
means each class is trained against each other class. Since the training data has to
be split for each of the class combinations, it is necessary to have a certain number of
samples for each class. The prediction is done according to a voting scheme, where each
binary SVM predicts a class which then is awarded with a vote. The class with the
most votes is considered as the final prediction. The main advantage of this approach
is the more accurate classification, since there are many more SVMs than in the OvR
approach. The disadvantage is that the number of binary SVMs scales with the num-
ber of classes according to the formula n(n − 1)/2, where n is the number of classes.
In scenarios where the number of classes is high, the training time can become an issue.

In addition to these two approaches based on binary classification, there is another
approach to implement a multiclass classification by transforming the hinge loss to a
multiclass hinge loss [27]:

L(y) = max(0, 1 + max
y 6=t

wyx− wtx) (2.8)

In Equation 2.8 t is the target label, wy and wt are the weights of the SVM. This
approach does not perform better than OvR and OvO [26]. Moreover, it is only with
some adjustments compatible with the Sequential Minimization Algorithm (SMO) [28],
which is the reference algorithm for an SVM. Therefore, multiclass SVM still relies on
either OvR or OvO.

8



2.1 Machine Learning

2.1.3 Platt Scaling

An SVM predicts only class labels. However, in some cases probabilistic predictions
are needed. An SVM can be calibrated to provide probabilistic predictions via Platt
Scaling [21]. Platt Scaling is fitting a Sigmoid function for this.

P (y = 1|f) =
1

1 + exp(Af +B)
(2.9)

Platt Scaling calibrates a binary SVM with Equation 2.9 for the probabilistic output.
To calibrate a multiclass SVM, Platt Scaling has to be adjusted. In OvO case, this
can be done by Pairwise Coupling [29] and in the OvR case by extending the coupling
[30]. Since an OvO SVM can be transformed into an OvR SVM, the extension of the
coupling is often used for multiclass calibration as that algorithm is more efficient and
easier to implement.

2.1.4 Support Vector Regression

Support Vector Regression (SVR) is an extension of the well-known SVM for regression
analysis [31]. The optimization function of a hardmargin SVR is as follows:

min
||w2||

2
Constraint: |yi − (wTxi + b)| ≤ ε

(2.10)

In Equation 2.10 yi denotes the target value of the predictor xi, w denotes the weights
and b denotes the bias. The parameter ε defines the distance from the regression func-
tion in which all predictors should lie in. Figure 2.2 shows the graphical representation
of ε-tube which bounds all predictors. Unlike other regression algorithms, an SVR
allows this ε deviation from the outcome value.
Since there might be some cases where not all predictors can lie in this ε-tube, the
softmargin approach of an SVM can also be used for regression analysis. Unlike the
softmargin SVM, two slack variables ξi and ξ∗i are introduced [32]. This allows to
individually tune the allowed outliers above and below the ε-tube. However, in most
implementations ξi = ξ∗i is used, because having different ξi and ξ∗i increases the num-
ber of hyperparameters and complicates the training process.
The introduction of these slack variables ξi and ξ∗i changes Equation 2.4 to:

min
||w2||

2
+ C

N∑
i

(ξi + ξ∗i )

Constraint: yi − wTxi − b ≤ ε+ ξi

wTxi + b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(2.11)

The parameter C with C > 0 defines the tolerance for points outside of ε. If C → 0
Equation 2.11 approaches Equation 2.10. If C →∞, the tolerance for the data points
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2 Fundamentals

outside of ε increases and they dominate the equation. Usually, C = 1.0 is considered
a suitable.
The loss of an SVR is known as the ε-insensitive loss function and can be expressed as
[32]:

L(X, ε) =

{
0 if|yi − (wTxi + b)| ≤ ε

|yi − (wTxi + b)| − ε otherwise
(2.12)

One of the advantages of an SVM is the usage of kernels for classifying nonlinear
data. Since an SVR is in its basic a modified SVM, as they both rely on the Support
Vector algorithm, an SVR can also use the kernel trick to deal with nonlinear regression
analysis. All SVM kernels can also be used for an SVR [7].

Figure 2.2: Graphical representation of an SVR [33]. The SVR optimizes its regres-
sion line in the way that all points should lie in the tube which is stretched
by the parameter ε. The parameter ξ is the distance to the ε-boundary.

2.2 Activity Recognition

Activity Recognition can be understood as the classification of activities performed by
humans. Due to the increase in accessibility of cheap sensors in the form of smartphones
or smartwatches, activity recognition has gained much traction in research groups re-
cently. Most of the smartphones have built-in motion sensors which make it possible
to record data of daily life without needing to setup complex sensor environments [34].
It has led to a high increase in collected data which is benefiting the ML algorithms.
Since the collected data consists mostly out of raw sensor data, activity recognition
is very familiar to pattern recognition. The focus in activity recognition has recently
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2.2 Activity Recognition

shifted to the usage of deep neural networks (DNN). As the amount of data has in-
creased and especially the computational power of modern hardware, deep learning
became sufficient for recognizing activities [2].
Activity recognition based on raw sensor data is a challenging task for classifiers. Differ-
ent activities can be performed simultaneously and activities can overlap. This means
the activities share common parts among each other. For example, drinking water and
washing teeth share both the movement of a glass to the mouth.

Due to these challenges, new approaches in activity recognition distinguish between
atomic activity and composite activities [10, 35]. In this distinction, a compositive
activity consists of several atomic activities. In the scope of activity recognition, these
approaches first classify the atomic activities and afterwards the composite activities.
The advantage of this approach is that it can deal with overlapping activities well. For
example, the composite activity ”preparing food” consists of several atomic activities
like standing, walking, cutting, opening a door, taking, and closing a door.

Figure 2.3: Schematic model of the Activities of Daily Living (ADL) recognition [10].
The raw sensor data is collected with a smartphone. Out of this data
the atomic activities are learned via Rank Pooling. In the last step the
composite activities are learned with an SVM.

Using this distinction between atomic and composite activities, it is possible to use
the rank pooling approach to maximize the precision of the activity recognition.

2.2.1 Rank Pooling

Rank Pooling is a temporal pooling method for activity recognition [36]. It uses the
temporal dynamics of the input data to recognize activities or actions. Even though
it was originally proposed for video data, it is also suitable for sensor-based timeseries
[10]. Figure 2.4 shows a graphical scheme of rank pooling with video data as input.
Rank pooling takes the sensor data of the atomic activities as input. It searches for
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the temporal evolution of this input which ultimately can be related to the composite
activities. There are several options to find that evolution, however, the time-varying
mean vectors approach suits in most cases well. Time varying mean vectors have
one advantage over other approaches like moving average: They can not only find
dependencies in past to future frames, they can also find dependencies in future to
past frames [36].
After these features are generated, the actual rank pooling can be done. The rank
pooling is done with an SVR, which learns the evolution of the frames regarding their
appearance in the video. This is stored in the parameters of the SVR. After training
the SVR, these parameters are used as the input for the classifier, which in this case
is an SVM. This SVM learns the parameters of the SVR with the labeled composite
activities to perform the actual activity recognition.

Figure 2.4: The steps of rank pooling [36]. Each video can be interpreted as a dataset.
Each frame is extracted from the video and for each frame one feature
is generated. These features are then used as the input for the ranking
machines, which is an SVR in the case of ADL recognition. Finally the
weights of the SVRs are used to train an SVM which learns the represen-
tation of the composite activities.

2.3 Privacy in Machine Learning

Privacy is important in many areas. ML is no exception. Due to the increase of usage of
ML in several areas, privacy has become an issue. In many areas, ML relies on sensitive
data which shall not leak out to the public. Therefore, privacy preserving methods for
ML are an important research area and have gained much attention recently.
Data leakage is a dangerous problem. The leakage can be exploited in attacks against
the ML algorithm which have to goal to extract that data. In contrast to attacks which
try to extract information about the training data out of a ML algorithm, there are also
attacks which try to harm the classifier itself. For example, adversarial attacks [37] try
to inflict a false classification by designing malicious inputs. Depending on the attack
scenario, different defense mechanisms and privacy parameters are needed. However,
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there are also attacks which do not directly attack the ML model itself. They attack the
system at different points during the usage of the model. This is especially a problem
for online models. This work focuses on attacks which try to extract information out of
ML model and do not take vulnerabilities at different points in the usage of the model
into consideration.
One of the main reasons ML models may leak information is their overfitting on the
training. To prevent this overfitting, a class of regularized empirical risk minimization
classifiers is introduced. These classifiers can be defined as follows [38]:

J(f,D) =
1

n

N∑
i=1

L(f(xi, yi) + ∆N(f) (2.13)

They add to the loss function L a regularization term to penalize overfitting. This
is a small privacy preserving method.

To express privacy, the concept of ε−differential privacy was introduced by Dwork
et al. [39]: p

Definition 2.3.1 (ε-Differential Privacy) Let D be the set of all databases, Obs be
the set of observations, and R(Obs) be the set of random variables over Obs. A ran-
domized algorithm M : D → R(Obs) for any pair of databases D and D’ which only
differ at most at one row is ε−differentially private if for and for all tests S ⊆ Obs:

Pr[M(D) ∈ S] ≤ exp(ε)Pr[M(D′) ∈ S]

Definition 2.3.1 expresses that the probabilities Pr of all potential outcomes S of an
algorithm M performed on D and D′ only differ at most exp(ε).
Algorithms which satisfy the definition of ε−differential privacy guarantee a strong
robustness against known attacks. The parameter ε defines the privacy. A small ε
results in high privacy but also results in low accuracy. If ε approaches 0, the privacy
is highly protected, but the classifier does not produce accurate results. Therefore,
ε must be chosen in such a way in consideration of privacy and accuracy. Privacy
is achieved by adding noise to the algorithm. This randomness guarantees that a
single data point can only have so much influence that changing it does not leak any
information for an attacker who only has access to the output of the model.
The concept of ε−differential privacy can be extended to the concept of (ε,δ)-differential
privacy [40].

Definition 2.3.2 ((ε,δ)-Differential Privacy) Let D be the set of all databases, Obs
be the set of observations, and R(Obs) be the set of random variables over Obs. A
randomized algorithmM : D → R(Obs) for any pair of databases D and D’ which only
differ at most at one row is (ε, δ)−differentially private if for and for all tests S ⊆ Obs:

Pr[M(D) ∈ S] ≤ exp(ε)Pr[M(D′) ∈ S] + δ
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Definition 2.3.2 expresses that the probabilities Pr of all potential outcomes S of an
algorithm M performed on D and D′ only differ at most exp(ε) with an probability δ
that information is leaked accidentally. It is not as strict as plain ε−differential privacy
and can achieve better accuracy for the classifier while still providing a strong privacy.

Theorem 2.3.1 (Post-Processing) Let M : N|X | → R be (ε, δ)-differentially pri-
vate. Let f be a function with f : R → R′. Then f ◦ M : N|X | → R′ is (ε, δ)-
differentially private.

Theorem 2.3.1 expresses that an algorithm which is performed on the output of an
(εi, δi)-differentially private algorithm cannot add leakage [41].

Theorem 2.3.2 applies for the composition of algorithms with (ε, δ)-differential pri-
vacy [41].

Theorem 2.3.2 (Composition) The composition of n (εi, δi)-differentially private
algorithms is (

∑n
i εi,

∑n
i δi)-differentially private.

This theorem is especially important for multiclass classification which is based on
OvO-classification or OvR-classification. In that case, ε and δ have to scaled down for
each binary classifier to achieve (ε,δ)-differential privacy in the multiclass classification
algorithm.

2.3.1 Privacy-Preserving Mechanism

In recent times, increasingly privacy-preserving algorithms have been published. In
the scope of this work, the output perturbation, which is introduced as algorithm 1
and the objective perturbation as algorithm 2 are presented [38]. Furthermore, for the
SVM experiments a (ε,δ)-differentially private SGD is evaluated, which is introduced
in algorithm 3 [42].

Output perturbation and objective perturbation choose a predictor f which mini-
mizes the regularized empirical loss, defined in Equation 2.13.

Both algorithms have the following restriction for their input X:

∀x ∈ X : ||x||2 ≤ 1 (2.14)

To preserve privacy, both algorithms rely on the addition of noise at different points
during the training phase. This noise is represented by the noise vector b, drawn from
the Laplace distribution and is a random noise with density [38]:

v(b) =
1

α
e−β||b||2 (2.15)
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In Equation 2.15, α is a normalizing constant and β is a parameter defined by the
relevant algorithm.

The first algorithm 1 is the output perturbation that adds noise to the weights of
the classifier.

Algorithm 1 ERM with output perturbation

Input: Data X, parameters εp, λ
Output: minimizer fpriv

1: Draw vector b according to 2.15 with β = nλεp
2

2: Compute fpriv = argmin J(f,X)+b

Algorithm 2 is the objective perturbation that adds noise to the objective function
itself and minimizes the perturbed objective function. This perturbation is as expressed
as [38]:

Jpriv(f, X) = J(f, X) +
1

n
bT f (2.16)

In Equation 2.16, b has a density according to Equation 2.15 with β = εp. With
this definition of the perturbed objective function, the objective perturbation can be
defined as shown in algorithm 2.

Algorithm 2 ERM with objective perturbation

Input: Data X, parameters εp, λ, c
Output: minimizer fpriv

1: ε′p ← εp − log(1 + 2c
nλ

+ c2

n2λ2
)

2: if ε′p > 0 then
3: ∆← 0
4: else
5: ∆← c/(n(eεp/4 − 1))− λ
6: ε′p ← εp/2
7: end if
8: Draw vector b according to 2.15 with ß=ε′p/2
9: Compute fpriv = argmin Jpriv(f,X)+1

2
∆||f||2

The case distinction in algorithm 2 at lines 2 and 4, is needed for the proof that this
algorithm provides ε-differential privacy [38].

In the scope of this work, the SVM is also implemented with an SGD approach. An
(ε,δ)-differentially private SGD is presented by Abadi et al. [42], and implemented in
algorithm 3. Compared to a non-differentially private SGD, this algorithm clips the
gradients. This means each gradient greater than the clipping bound C is clipped in
its length to C. Clipping is required to fulfill the differential privacy as it bounds the
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influence of each sample on the gradient descent [42]. The clipped gradient is perturbed
with noise drawn from a multivariate Gaussian distribution.

Algorithm 3 differentially private SGD

Input: Data X, parameters: privacy εp, clipping bound C, learning rate
lr

Output: weights

1: Initialize weights randomly
2: Compute Gradient
3: if ||Gradient|| > 1.0 then
4: Clip Gradient
5: end if
6: Add noise
7: Descent

2.4 Membership Inference Attack

A Membership Inference Attack (MIA) is an attack which tries to determine whether a
sample was used for training the model or not [43]. Although this does not sound that
much inflicted in the first moment, in scenarios where the training data consists out of
sensitive data, this can become an issue. An attacker can gain a type of information
out of this knowledge. For example, if this training set was used to train a model
which is learning if a certain treatment method has success for a certain disease, you
can assume that each sample in that training data is from persons who suffer from that
disease, hence an attacker now knows that this person, whose sample he got his hands
on, suffers from that disease.
A MIA exploit the fact that models in general have a higher confidence on their training
samples than on samples which were not used for training. Therefore, a MIA performs
best if the victim model, which is the model the MIA attacks, produces likelihood
vectors as output and not just the labels. These likelihood vectors should show a much
higher likelihood for a single class in case the sample was used to train the model. If
the sample was not in the training set, the likelihoods are more equally distributed.
The following two steps are required to perform MIA.
Firstly, a shadow model is trained on similar data. The higher the similarity of the
data to the training data of the victim model, the more accurate is the attack. The
MIA performs best in a white-box scenario, where an attacker has knowledge of the
victim’s layout. It can also work in the blackbox scenario, where an attacker does not
have any knowledge. In the later case, an attacker might use several shadow models
to limit this restriction [43]. It is to use similar data to train this shadow model as it
was used in the training of the victim model.
Once the shadow models are trained, the actual attack model can also be trained. It
acts as a binary classifier by taking the outputs of the shadow model and predicting
whether these outputs were part of the training samples or not. Since this is a binary
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classification task, the attack model itself can be a small fully connected neural network
with 3 layers. Figure 2.5 shows a MIA schematic.

Training data

Test data

data Shadow model
Likelihood 

vectors
labels

Figure 2.5: Scheme of a Membership Inference Attack. A similar data set is split
into training and testing set. A shadow model is trained on this training
set. After training is done, the shadow model predicts the whole data
set. The predicted likelihood vectors show a pattern: Likelihood vectors
for training samples have a high confidence for a single class. In contrast
likelihood vectors for testing samples does not have this high confidence.
Training samples are labeled for the attack model which is learning based
on the likelihood vectors and the corresponding labels.
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Chapter 3

Experimental Setup

This chapter describes the implementation of privacy preserving algorithms. Firstly,
the implementation and results of the MIA are shown. Implementation of the MIA,
SVM, and SVR can be found at https://github.com/nkath/differentiallyprivatesv.

3.1 Setup and Implementation

3.1.1 Membership Inference Attack

In the first step, the current approach presented by Nisar et al. [10] has to be investi-
gated if it is vulnerable to membership inference attacks.
The recognition of ADLs in that approach is achieved by implementing an SVR and an
SVM in the sklearn framework [44] which provides an interface to the C++ implemen-
tation of those two ML algorithms in the libsvm framework [7]. Since most membership
inference attacks exploit overfitting on the training data, the activity recognition has
to produce not only labels but also probabilities. The sklearn SVM implementation
provides two options to calibrate itself to produce probabilistic outputs:

• Self-calibrating the SVM

• Usage of the CalibratedClassifierCV(CCCV) class

Self-calibrating the SVM only requires the parameter probability to be set to true,
which internally uses a k-fold cross-validation to train and calibrate the classifier.
This calibration method has the consequence that the probabilities heavily overfit for
training samples. This can be seen in Table 3.2 which shows the calibrated probabil-
ities 3.2 for the first training sample in the training-testing split of the CogAge data
set. The corresponding output of the SVM’s decision function is shown in Table 3.1.
There are two labels which have a great distance from the hyperplane, label 0 and
label 3. Naturally, it is expected that label 0 has the highest probability and label 3
has a small probability. However, the probabilities in the SVM self-calibration heavily
overfit for label 0 as it has a probability of 94.7% while label 3 has a probability of
only 1.1%. Interestingly, this is the same probability which is predicted for label 4 and
5, which have a much smaller distance from the hyperplane.
The usage of the CCCV has two options to perform the calibration. Either a pretrained
classifier is calibrated or the CCCV trains and calibrate a classifier. The later option
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3 Experimental Setup

is used in this work. Hereby, 5-fold cross-validation is used by default. This method
has a better mapping of the distances from Table 3.1 to probabilities in Table 3.2. It
predicts a probability of 62.3% for label 0 and 31.0% for label 3. In contrast to the
SVM self-calibration, this calibration method does not overfit heavily towards label 0.

In contrast, the CCCV takes this into consideration as label 0 still has the highest
probability with 62.3% but also has some probability for label 3 with 24.1%.

Table 3.1: The 0 vs Rest binary SVM has the greatest distance from the hyperplane,
therefore label 0 is the output label. 5 vs Rest has also a great distance
from the hyperplane.

0 vs Rest 1 vs Rest 2 vs Rest 3 vs Rest 4 vs Rest 5 vs Rest 6 vs Rest
6.29 1.78 -0.25 5.26 3.95 0.75 2.83

Table 3.2: The self-calibrated SVM in table 3.2 heavily favors Label 0 with its proba-
bility prediction, while the CCCV does not as it also has some probability
for label 3. In case the CCCV is trained on the same data set as the classi-
fier, which is the approximation of self-calibrated SVM, the CCCV shows
a similar overfitting on label 0.

Calibration Label 0 Label 1 Label 2 Label 3 Label 4 Label 5 Label 6
SVM 94.7% 1% 0.5% 1.1% 1.1% 1.1% 0.5%

CCCV 62.3% 0.2% 0.3% 31.0% 0% 1.9% 4.3%

The most well-known Membership Inference Attack is the attack suggested by Shokri
et al. [43]. This attack creates for each class a shadow model and an attack model.
In the scope of this work, the focus lies on white-box attacks, therefore the attacker
knows the architecture of the victim model. This means an attacker can use the same
architecture of the victim model as the shadow model. The shadow models have to be
trained on a different set of samples than the victim model.
Since the CogAge data set is rather small with a total of 890 samples, training the
shadow models can become an issue as there are not enough samples for each shadow
model. There is a simplification of this attack suggested by Salem et al. [8]. Instead
of creating a shadow model for each class, this attack only uses a single shadow model
which is called S. This shadow model S is trained on the data set X1 which is one half
of the data set X. The other half of X is used for the testing set X2. Shadow model
S predicts the probabilities for the data set X after it was trained. The probabilities
for each sample are represented in descending order, and the highest 3 possibilities are
considered, the rest is cut off. This probability array is the input for the attack model
A. The label input for A is a column vector Y with the amount of samples in X which
has a value of 1 at the positions of the samples which were used for training and 0
for those which were not used for training. The attack model A can consist of 3 fully
connected layers with a decreasing number of neurons. After training for around 100
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epochs, the attack model A can be used to attack the victim model. Therefore, the
output of the victim model is given to A which then predicts the membership of the
samples belonging to this output.

Algorithm 4 Salem MIA Attack

Input: data X, label y

1: X1, X2 ←split(X)
2: Train Shadow model S on X1

3: prediction←S.predictproba(X)
4: attackdata← topThree(prediction)
5: truetrain←ones(len(X1)
6: falsetrain←zeros(len(X2)
7: attacklabel ←stack(truetrain, falsetrain)
8: Train attack model A on attackdata and attacklabel
9:

For the demonstration purpose of the MIA, the shadow model S and attack model
A are trained on the testing data set of the victim model. Therefore, this work focuses
on the hold-out setting, where half of the data is used for training and the other half is
used for testing. This setup is used as the MIA relies on similar data to train on and
there are no other public available data sets which are similar to the CogAge data set.
The training data set is used to train the victim model, the testing data set is used to
train the shadow model S.
The victim model then predicts the probabilities for each sample of the CogAge data
set and the attack model A predicts out of these probabilities of the samples those were
used for training.
The victim model is the approach by Nisar et al. [10], which combines a LinearSVR
and SVM in the sklearn-framework [44]. To be more precise, the model which is being
attacked, is the SVM implementation. The shadow model is the same SVM imple-
mentation which the victim model is using. The attack model is implemented in the
TensorFlow framework [45]. This framework provides an easy to use interface to build
and use neural networks. The attack model is a 3-layer fully connected neural network
with a decreasing number of neurons in each layer. It starts with 128 neurons in the
first layer, 64 in the second and has one output neuron in the last layer. Since it is
a binary classifier, the attack model is trained with binary cross-entropy as its loss
function. Therefore, the output layer is activated with the sigmoid function, so the
output of the attack model is interpreted as a training sample if the output is ≥ 0.5
and as a non-training sample if the output is < 0.5.

Table 3.3 shows the results of the MIA for different probability calibration methods
for the activity recognition approach by Nisar et al. [10] on the CogAge data set. The
attack performs best if the SVM is self-calibrated. In that case, the attack achieves
an accuracy of 83%. This is due to the strong overfitting on the training samples of
this calibration method, as shown in Table 3.2. This benefits the attack, since it relies
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on overfitting on the training samples. This finding strengthens the cause to make the
SVR private in rank pooling
Theorem 2.3.2 allows it to make the SVR differentially private and achieve differential
privacy even after the SVM is applied. In the scope of this work, it was also evalu-
ated what happens if the SVM is made differentially private. However, in this case
the CCCV implementation is used to generate the probabilistic output to have a fair
comparison. If the training of the classifier and calibration is done with the 5-fold
cross-validation approach of the CCCV, the attack has only an accuracy of 59%.

Table 3.3: This table shows the results of the MIA attack. When the SVM is self-
calibrated, the attack can distinguish with an accuracy of 84% if the sample
was used for training or not. If the CCCV is used for calibration the attack
has an accuracy of 59%.

Calibration accuracy
SVM 84%

CCCV 59 %

Even though 59% might seem low, the attack works. Nevertheless, there are attacks
which are not as simplified as the MIA by Salem et al. [8]. For example, a label-only
MIA does not rely on the probabilistic output [46]. These attacks might perform better
on the ADL recognition and therefore it is plausible to make this activity recognition
have ε-differential privacy.

3.1.2 Implementation

The implementations of the support vector algorithms for output and objective per-
turbation rely on the so-called bias trick. The bias trick allows to transform a classifier
in the form of

f(xi,W, b) = Wxi + b (3.1)

to a classifier in the form of

f(xi,W ) = Wxi (3.2)

The bias trick combines the two parameters W and b into W by adding an extra di-
mension to W . This additional dimension stores the previous parameter b. To perform
this adaption, xi is extended with a additional dimension which holds the constant 1.
This conversion is crucial for the ongoing sections, as the proposed implementations in
algorithms 7 and 8 are using the bias trick and therefore refer to the layout presented
in Equation 3.2.

As pointed out in Section 2.1.2 there are different options to implement the mul-
ticlass SVM. This work uses the OvO approach for training. Prediction is done via
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transforming the OvO output to a OvR output which is needed to use the CCCV class.

To implement the ε-differentially private SVM and SVR, their loss functions have
to approximated. As pointed out in Section 2.3, the privacy preserving algorithms by
Chaudhuri et al. require a differentiable loss function [38]. Since the derivative of the
SVR’s loss function (see 2.12) is discontinuous at |yi(wTxi + b)| = ε, the loss function
has to be approximated with a differentiable loss function. This can be achieved by the
approximation as described in Equation 3.3, which is called the smooth ε-insensitive
loss [47]:

L(X, ε) = log(1 + eX−ε) + log(1 + e−X−ε)− 2log(1 + e−ε) (3.3)

This approximation is smooth and differentiable at all points, and therefore, satisfies
the privacy guarantees of algorithms 1 and 2. Figure 3.1 plots this smooth ε-insensitive
loss against the ε-insensitive loss to show the difference of both loss functions.
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Figure 3.1: Comparison of the smooth ε-insensitive loss from Equation 3.3 in blue
against the ε-insensitive loss from Equation 2.12 in orange. For ε = 0.2
the smooth ε-insensitive loss is slightly below the ε-insensitive loss with a
constant offset of 1.15. This offset is decreased down to 0.4 for ε = 1 and
for ε = 5.0 it is not possible to distinguish both lines for |X| > 6.5, but
there is some difference where X = ε.

The plotting shows that Equation 3.3 is a good approximation of Equation 2.12. The
smooth ε-insensitive loss approximate the ε-insensitive loss well for different ε values.
In the case ε = 1.0 the smooth approximation is nearly not distinguishable from the
nonsmooth function. If ε = 0.2, which is often used, the smooth approximation has a
slight offset compared to the nonsmooth function. The plotting of ε = 5.0 shows that
the smooth ε-insensitive loss approximates the ε-insensitive loss even for a high ε.

The hinge loss is not differentiable at yi(w
Txi + b) = 1. There are some proposed

approximations of the hinge loss which are differentiable. In this work, the approxima-
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tion by Chapelle [48] is used with z = yi(w
Txi + b), which is called Huber loss in the

further:

L(z, h) =


0 if z > 1 + h
1
4h

(1 + h− z)2 if |1− z| ≤ h

1− z if z < 1− h
(3.4)

Figure 3.2 plots this approximation against the hinge loss. The plotting shows that
the Huber loss is a good approximation as the Huber loss approximates the non-
differentiable spot z = 0 well for small h. For h→ 0 Huber loss approaches the hinge
loss. A typical value for h is 0.5 [48].
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Figure 3.2: Comparison of the smooth Huber loss approximation against the hinge
loss. The left image shows that the Huberloss has the same course of the
function. The right image is zoomed on z = 1.0. If h is chosen small, the
course is really similar to the hinge loss.

As pointed out in Section 2.1.4, SVR and SVM are similar to each other. Their
biggest difference is the usage of different loss functions. This similarity is used in the
implementation of algorithms 1 and 2, as they share most of their code, regardless if
an SVM or SVR is implemented. Their main difference is the calling of different loss
functions in the respective implementation. Algorithm 5 shows this backbone. The im-
plementation has three input parameters, the data X, the corresponding label vector
y and a lossparameter z, which is either the h in the Huber loss or the ε in the smooth
ε-insensitive loss. The difference between an SVM and an SVR implementation is the
loss function, which is called and calculated. In case algorithm 5 is used for an SVM,
the loss is calculated accordingly to the Huber loss in Equation 3.4. If algorithm 5 is
used for an SVR, the ε-insensitive loss from Equation 3.3 is used.
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Algorithm 5 Support Vector algorithm

Input: data X, label y, lossparameter z
Output: Support Vector Algorithm f

1: weights← zeros(len(X[0])
2: n← len(X)
3: function objective Function(X)
4: loss←calculateLoss(y(weightsTX), z)
5: f ← loss
6: return f
7: end function
8: f ← minimize(objective Function(X))
9: return f

As this support vector algorithm is a minimization problem, the minimization can
be solved with a quasi-Newton algorithm. There are several algorithms of the quasi-
Newton class which can solve this optimization. In this work, that optimization is
solved with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [49], which is
one of the most advanced algorithms in the class of quasi-Newton algorithms. The
BFGS algorithm is provided by the scipy framework in Python [50].
The algorithm runs until the maximum number of iterations is achieved or the mini-
mization has converged. As the support vector algorithms are a convex optimization
problem, the termination is mostly caused by the converging, not the maximum num-
ber of iterations.

The differentially private algorithms by Chaudhuri et al. [38] use Laplace-like noise
to achieve protection. Algorithm 6 shows the implementation of the noise generation.

Algorithm 6 Noise Generation

Input: dim d, scale λ
Output: noise vector n

1: normn←gammanoise(dim, 1
λ
, 1)

2: r ←normalDistribution(0, 1, d)
3: n← r

||r|| ∗ normn
4: return n

This algorithm 6 takes as input the dimension d, which is the dimension of the output
noise vector, and the scale parameter λ. It draws the noise vector from the Gaussian
distribution with λ as the scale parameter and d as the size.

Algorithm 1 can be expressed by using Python and scikit-learn as shown in algorithm
7. Besides the inputs which were used in algorithm 5, two privacy parameters ε and
λ are added. These are to scale the noise in the output perturbation approach, as
explained in algorithm 1.
In the first step, the weight matrix weights is initialized. It has the size of a data
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point and is initialized with zeros. If Algorithm 7 is used for a OvO SVM, the noise
can be drawn from the Gaussian distribution[39], otherwise it is drawn accordingly to
Algorithm 6. The scale parameter σ for Gaussian noise is calculated accordingly to:

σ =
2C · c

√
2 log(1.25

δ
) ·

√
|classes|(|classes− 1)/2

ε
(3.5)

In Equation 3.5 C, denotes the softmargin parameter and c is the clipping bound.
The term

√
|classes|(|classes− 1)/2 is needed to satisfy Theorem 2.3.2. It has to be

noted that the calculation of σ is really sensitive to the chosen C. Therefore, C is set to
0.03 which is a good trade-off between accuracy between accuracy and having enough
noise. After the optimization is finished, the optimized weights array f is perturbed
with the noise vector to achieve (ε,δ)-differential privacy.

Algorithm 7 Support Vector algorithm with output perturbation

Input: data X, label y, lossparameter z, privacy parameter ε, λ
Output: Support Vector Algorithm f

1: weights← zeros(len(X[0]))
2: if SVM then
3: σ ← (2C · c

√
2 log(1.25/δ) ·

√
|classes|(|classes| − 1)/2)/ε

4: noise← GaussianNoise(σ,dim(X))
5: else
6: noise← noise(ε,dim(X)) (see Alg. 6)
7: end if
8: function objective Function(X)
9: loss←calculateLoss(y(weightsTX), z)

10: f ← loss+ 0.5λ(||f ||2)2
11: return f
12: end function
13: f ←minimize(objective Function(X))
14: return f + noise

The implementation of the objective perturbation algorithm in Python is shown in
Álgorithm 8. If Algorithm 8 is used for a multiclass SVM, ε has to be scaled down to
satisfy Theorem 2.3.2. This is done with the scale factor 1/10 which was calculated
using the implementation of Probability Buckets1[51].
The main difference to the implementation of algorithm 7 is the perturbing of the
optimization function accordingly to Equation 2.16. In addition, the regularization
is added. Besides this difference, the calculation of the scale parameter for the noise
generation is implemented.

1https://github.com/sommerda/privacybuckets
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3.1 Setup and Implementation

Algorithm 8 Support Vector algorithm with objective perturbation

Input: data X, label y, lossparameter z, privacy parameters ε, λ
Output: Support Vector Algorithm f

1: weights← zeros(len(X)
2: n← len(X)
3: ε′p ← εp − log(1 + 2c

nλ
+ c2

n2λ2
)

4: if ε′p > 0 then
5: ∆← 0
6: else
7: ∆← c/(n(eεp/4 − 1))
8: ε′p ← εp/2
9: end if

10: noise← noiseGeneration(dim(X),εp/2) (see alg. 6)
11: function objective Function(X)
12: loss←calculateLoss(y(weightsTX), z)
13: f ← 1

n
loss+ 0.5λ(||f ||2)2 + 1

n
noiseTf + 1

2
∆(||f ||2)2

14: return f
15: end function
16: f ←minimize(objective Function(X))
17: return f

Besides these two implementations, the SVM is also implemented with a gradient
descent approach which provides (ε,δ)-differential privacy [42]. The gradient descent is
implemented within the PyTorch framework [52]. PyTorch is, like TensorFlow as well,
a ML framework. PyTorch is used in this implementation to calculate and update the
gradients and to perform the gradient descent.
Algorithm 9 shows this implementation which is called Mini-Batch Stochastic Gradient
Descent (MBSGD). In each iteration, a random batch is drawn. The random batch
has the size of 32 in this implementation. From this batch the loss is calculated and
based on that the gradient is calculated. The gradient is multiplied with the learnrate
lr which in this case is really high with a value of 1. This is required as otherwise
the added noise is too dominant. This is caused by the fact that the σ, which is
σ = ((|batchsize|/n) ∗

√
epochs ∗ (|classes| ∗ (|classes| − 1)/2) ∗ log(1/δ) ∗ C)/ε [41],

scales with the ratio of |batchsize|/n where n is the number of samples in the data
set. Since the CogAge data set is rather small, that ratio is quite close to 1 which
leads to a great σ. To compensate this, the learning rate is increased and therefore
the length of the gradients. This results in most gradients having the length of 1.0,
when they are clipped or being close to 1.0. If the length of the gradients is 1.0 or
close to 1.0 the noise is no longer dominant and the algorithm is more stable. With the
calculated σ the noise is drawn from a multivariate normal distribution. Finally, that
noise is combined with the gradient which then is used to update the weights. After
this perturbation, the next epoch can start.
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Algorithm 9 Mini-Batch SGD Support Vector Machine

Input: data X, label y, clip parameter C, privacy parameters ε, δ
Output: Support Vector ,Algorithm f

1: n← len(X)
2: weights←random(n)
3: batchsize← 32
4: lr ← 1
5: for epoch in epochs do
6: pick random batch of size batchsize
7: calculateLoss
8: gradient←calculate gradient
9: gradient← lr ∗ gradient

10: if ||gradient|| > 1.0 then
11: gradient/ = ||gradient||
12: end if
13: σ ← (batchsize/n)

√
epochs ∗ (|classes| ∗ (|classes| − 1)/2) ∗ log(1/δ ∗ (C/ε)

14: noise← normalDistribution(mean(gradient),cov=σ)
15: weights← gradient+ noise
16: end for

3.1.3 data set

All experiments are carried out on the Cognitive Village (CogAge) data set. In this
data set, atomic and composite activities were collected using a smart phone, smart
watch, and smart glasses [10].

• LG G5 smartphone to capture the body movement. It was placed in a subject’s
front left pocket of the jeans and provided the following sensory modalities: a
gyroscope, gravity sensor, magnetometer, linear accelerometer, and 3-axis ac-
celerometer.

• Huawei watch to capture the movement of the hand. It was placed on a subject’s
left arm and provided a magnetometer and 3-axis accelerometer.

• JINS MEME glasses to capture the head movement with 3-axis accelerometer.

The data set consists of 7 composite activities and 61 atomic activities. A total
of 9700 instances of atomic activity were recorded on 8 different subjects. Over 1000
instances of composite activities were collected with 6 different subjects, however, some
instances had missing sensory data and were therefore removed from the data set.
Therefore, in total 890 instances of composite activities were used for the data set.
[10]. The composite activities contain:

• Brushing Teeth

• Cleaning Room
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• Handling Medication

• Preparing Food

• Styling Hair

• Using Phone

• Washing Hands

3.2 Evaluation Methodology

The evaluation is carried out from two points of view, one is the accuracy and the
other is the defense against attacks. All experiments are carried out on the CogAge
data set which is described in Section 3.1.3. Different values for ε are evaluated, these
are: ε = [0.5; 1.0; 2.0; 4.0; 8.0]. The experiments are divided into three parts:

1. SVR with output perturbation

2. SVR with objective perturbation

3. SVM with differential privacy

The SVR is first evaluated with two named algorithms. Afterwards, SVM results
are represented, even though they are a bit out of the scope of this work. Table 3.4
shows the version of each library used for the experiments.

Table 3.4: Overview of the frameworks used and their version number.

Tool Version
numpy 1.18.1
Python 3.6.8

scikit-learn 0.23.0
scipy 1.4.1

TensorFlow 2.1.0 GPU
torch 1.7.1+cu101

torchvision 1.7.1+cu101

The accuracy results of this implementation are compared with the results of the
rank pooling approach by Nisar et al. [10]. In that work, several pooling techniques
were looked at and evaluated by the average F1 score, accuracy, and the weighted F1
score. This work uses the same measures. The work by Nisar et al. [10] was done in
the sklearn framework, which provides an interface to the SVR and SVM implementa-
tion from the libsvm framework [44, 7]. That work presented results for two scenarios,
a hold-out setting and a leave-one-subject-out cross-validation. This work uses the
hold-out setting for evaluation as this setting suits best for setting up the attack, as

29



3 Experimental Setup

described in Section 3.1. Nisar et al. [10] suggested different pooling techniques. This
work specifies the evaluation of the the fused rank pooling with max and average
pooling and uses the pooling technique RPHellingerpowerFWDREV . Besides the named
measures, this work also evaluates the statistical distribution of the (ε,δ)-differentially
private SVM for each chosen ε by plotting the distribution in boxplots. It has to be
noted that this work uses the definition that the whiskers in a boxplot are defined as
interquartile range (IQR) · 1.5. In this work, δ is fixed to 0.0001.

The second evaluation is the defense against a MIA. In that scenario, the accuracy
of the MIA is the evaluation parameter. The benchmark in this evaluation is 50%,
as this is the accuracy achieved by an attacker who purely guesses, if a sample was
used for training or not. Therefore, the closer the accuracy is to 50% the more pri-
vate is the implementation. To measure the improvement in the defense, the loss of
the MIA accuracy is calculated. Therefore, the 50% mark is used as the baseline to
measure this improvement. For example, as shown, against the nonprivate approach
the MIA has a accuracy of 84%. An implementation which pushes this rate down
to 50% would have a MIA loss of 100% as now the MIA does not function anymore.
The accuracy of the MIA is plotted against the accuracy of the (ε,δ)-differentially pri-
vate implementation to present the relation between utility of the classifier and privacy.
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Chapter 4

Results

This chapter presents the results of the carried out work. This chapter is divided into
three parts, the first part evaluates the SVR with output perturbation. Afterwards,
the SVR with objective perturbation is evaluated. Finally, Section 4.3 presents some
results of a differentially private SVM which was investigated in the scope of this work.

Table 4.1 shows the accuracy results for the work presented by Nisar et al. 4.1. As
pointed out in chapter 3.2, these results are used to compare the accuracy results of
the differential privacy algorithms.

Table 4.1: Results of the work by Nisar et al. [10], which are used to compare the
result of this.

Average F1 Accuracy Weighted F1
63.65 63.64 63.68

4.1 SVR with Output Perturbation

The experimental results of the SVR with output perturbation can be seen in Table
4.2. Accuracy change and MIA change are regarding the reference approach.

Table 4.2: Experimental results for SVR with output perturbation. With ε = 2.0
the attack nearly completely fails while the accuracy loss with −27.77% is
moderate. ε = 4.0 results in acceptable accuracy loss with −12.49% while
still having good protection. ε = 1.0 has not acceptable accuracy loss and
ε = 8.0 offers to less protection.

ε Accuracy Average F1 Weighted F1 MIA Accuracy change MIA change
0.5 26.14 23.48 23.63 54.24 -58.93% -88.53%
1.0 35.74 32.27 32.14 53.29 -43.88% -90.32%
2.0 45.97 42.41 42.12 53.29 -27.77% -90.32%
4.0 55.78 52.55 51.77 59.91 -12.35% -70.85%
8.0 56.87 54.25 53.7 78.46 -10.64% -16.29%

Table 4.4 shows the standard error for accuracy and MIA accuracy from Table 4.2.
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Table 4.3: Standard Errors for accuracy and MIA accuracy from Table 4.2.

ε Accuracy Standard Error MIA Standard Error
0.5 0.44 1.09
1.0 0.39 0.61
2.0 0.35 0.85
4.0 0.38 1.30
8.0 0.2 0.85

For ε = 0.5 the accuracy is low with 26.14%. Compared to the reference approach,
the accuracy is more than halved with losing −58.93% of its accuracy. Even though
ε = 0.5 shows less protection against MIA than ε = 1.0 and ε = 2.0, it is in the range
of the standard error as shown in Table 4.3. Interestingly, ε = 1.0 and ε = 2.0 provide
on average the same protection against the tested MIA. However, they have differ-
ent standard errors. In both cases, the attack is close to having an accuracy of 50%
which means it is not successful at all. However, if accuracy of the ADL recognition
is compared, there is a large difference between ε = 1.0 and ε = 2.0. In case ε = 1.0
the classifier has only an accuracy of 35.74% which an loss of −43.83% compared to
the nonprivate SVR. In this case the approach loses nearly half of its accuracy. In
contrast, ε = 2.0 provides much better utility as the accuracy loss is only −27.77% to
an accuracy of 45.97%. However, this translates to classifying more than half of the
samples falsely.
To achieve good accuracy results, ε has to be set to 4.0. In this case, the accuracy drops
only by −12.49% to a total accuracy of 55.78%. This is an acceptable loss of accuracy.
On the other hand, ε = 4.0 still offers a good protection against the MIA. With an
accuracy of 59.91% most of the training samples are protected against this attack. If ε
is increased to 8.0 the accuracy drop-off is not much reduced in comparison to ε = 4.0,
as the accuracy loss is then −10.64% or a total accuracy of 56.87%. However, this
small increase in accuracy comes with a large penalty regarding the protection against
the MIA. For ε = 8.0 MIA nearly achieves the same accuracy as in the nonprivate
approach. With a MIA accuracy of 78.46% it is merely below the MIA accuracy of
the nonprivate approach, which sits at 84%. It can be said that for ε = 8.0 the SVR
with output perturbation offers nearly no protection against a MIA. Good protection
against MIA is given for ε ≤ 4.0.

Comparing the F1 scores of the SVR with output perturbation with the F1 scores
of the nonprivate approach shows that they are not as close to their corresponding
accuracy. While the average F1 score and weighted F1 score are only diverging in
the second decimal place for the nonprivate approach, in this approach with output
perturbation they diverge quite much. Compared to the accuracy in Table 4.2 average
F1 score is on average 3.41 lower and weighted F1 score 3.78. In contrast to the
nonprivate approach, in this experiment, the average F1 score is slightly higher than
the nonprivate approach.
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Figure 4.1: Self-calibrated SVM accuracy (blue) and the MIA accuracy (orange)
against it. For ε ≤ 4.0 the SVR with output perturbation provides rea-
sonable protection against the MIA, if ε = 8.0 the MIA performs nearly
as good as against the reference implementation. The accuracy increases
with increasing ε. For ε = 4.0 the SVR with output perturbation provides
reasonable protection against the MIA and accuracy of the SVM.

Figure 4.1 plots the accuracy of the SVM against the MIA accuracy for the evaluated
ε. The plotting shows that an increased ε results in better accuracy but also in an
increased accuracy of the MIA. However, for ε ≤ 4.0 the MIA has a accuracy < 60%
which is a good defense against the investigated attack. Furthermore, the plotting
shows really well that with an increased accuracy and MIA accuracy are approaching
the nonprivate reference values.

In Figure 4.2 the accuracy and MIA accuracy for the SVR with output perturbation
are plotted regarding their drop-off to the reference approach. The plotting shows
really well that for increasing ε the accuracy increases and once increasing ε does not
increase the accuracy anymore, the MIA accuracy increases heavily.

Figure 4.3 plots the boxplots of each evaluated 4.2. It shows a steady increase of
accuracy for increasing ε. Furthermore, the distribution of the values is close to each
average value as each boxplot has a small IQR and the whiskers are not far off from the
average value. With increasing ε the IQR slightly decreases which is expected as an
increased ε means less noise and therefore the range of possible results should decrease.
Interestingly, ε = 4.0 has an outlier with an accuracy of 60.05% which has an accuracy
better than any accuracy ε = 8.0 achieves. In addition, ε = 4.0 has also an outlier
on the negative side with an accuracy of 51.67%. Furthermore, the upper whisker for
ε = 4.0 is higher than the upper whisker for ε = 8.0. All other boxplots do not show
show a fluctuation which is interesting to note. However, the IQR for ε = 4.0 is small,
which hints that the calculated noise is on average in the same range. Furthermore,
the upper quartile is below the average of ε = 8.0 which decreases the impact of these
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Figure 4.2: Accuracy (blue) and MIA accuracy (orange) plotted in regard to the ref-
erence implementation. For ε = 4.0 this implementation achieves 87.65%
of the reference accuracy while the MIA accuracy is only 29.15% of the
reference.

outliers on the evaluation.

Interestingly, for ε = 1.0 the lower whisker is much closer to the average value than
the upper whisker. This is a good sign, as ε = 1.0 does not provide any far-off outlier
to the negative. For ε = 2.0 the boxplot looks like expected with an similar IQR and
distances to the outlier as ε = 1.0 shows. Clearly, the accuracy is much higher than for
ε = 1.0.

Figure 4.4 shows the corresponding average F1 score (blue) and weighted F1 score
(orange) for the SVR with output perturbation. The F1 scores for the nonprivate
implementation are shown in grey and yellow. The grey line is hardly visible as it is
covered by the yellow line since the average F1 score and weighted F1 score in the
reference approach only diverge in the second decimal place.
F1 scores for the SVR implementation are steadily increasing with an increasing ε.
Similar to the accuracy in Figure 4.1 the slope decreases with increasing ε but it is more
steep in the increase from ε = 4.0 to ε = 8.0. In contrast to the accuracy plotting in
Figure 4.1 the distance between reference plotting and plotting of this implementation
is larger. As already mentioned, the F1 scores for this implementation are not as
close to the accuracy as in the reference implementation. Therefore, the distance to
the reference F1 scores is larger even if the accuracy plot in Figure 4.1 approaches its
nonprivate counterpart.
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Figure 4.3: Boxplots for the SVR with output perturbation. With increasing ε the
whisker are getting closer to the average value. IQR is decreasing slightly
with increasing ε.

4.2 SVR with Objective Perturbation

Conclusively, the SVR with objective perturbation is evaluated. Table 4.4 shows the
results. The corresponding standard errors are shown in Table 4.5.

The presented results are similar to the results of the output perturbation. With
increasing ε the accuracy starts to increase with the downside that the accuracy of the
MIA increases. Interestingly, the increase in the accuracy for ε = 0.5 to ε = 2.0 is
nearly linear. However, for ε = 0.5 the accuracy is more than halved with a loss of
−57.73% compared to the reference approach for not much more protection than higher
a ε. There is one interesting anomaly which is ε = 2.0. If the results are compared to
the results of ε = 1.0 the accuracy and F1 scores show the expected behavior as they
increase. However, the accuracy of the MIA slightly decreases on average. While the
MIA has a accuracy of 55.75% for ε = 1.0, it is only 54.5% for ε = 2.0. This behavior is
unexpected as normally higher ε means less privacy and therefore the accuracy should
increase as well. However, the difference is relatively small and in the range of the
standard error, which is a plausible explanation for this. If ε is set to 4.0, SVR with
objective perturbation performs best in the trade-off between accuracy and protection.
The accuracy is good enough with 55.96% which is only an loss of −12.07%. This loss
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Figure 4.4: Average F1 score (blue) and weighted F1 score (orange). Both are close
to each other. The F1 scores (grey and yellow) of the implementation
from Nisar et al. [10] are plotted as an reference. Average F1 score from
Nisar is not visible as it is covered by the weighted F1 score.

Table 4.4: Experimental results for SVR with objective perturbation. With increasing
ε the accuracy increases while MIA accuracy increases as well.

ε Accuracy Average F1 Weighted F1 MIA Accuracy change MIA change
0.5 26.9 23.99 24.01 54 -57.73% -88.24%
1.0 33.55 32.55 32.41 55.75 -47.28% -83.09%
2.0 46.32 42.87 42.59 54.5 -27.22% -86.76%
4.0 55.96 52.81 52.34 59.71 -12.07% -71.44%
8.0 56.93 54.12 53.59 79.92 -10.54% -12%

is totally acceptable. On the other hand, the accuracy is decreased by −71.44% which
results in a accuracy of 59.71%. Choosing ε = 4.0 provides a sufficient defense as an
attacker cannot distinguish between training samples and testing samples. In contrast,
ε = 8.0 provides only 12% more protection compared to the nonprivate implementation
while carrying an accuracy loss of −10.54%. This is similar to what was shown for the
SVR with output perturbation. Increasing ε from 4.0 to 8.0 does not provide much
more accuracy as it only increases from 55.96% to 56.93% but reduces the protection
of the implementation drastically.
F1 scores show similar behavior as in the SVR with output perturbation. The average
F1 score is slightly higher than the weighted F1 score. The difference between the
average F1 score and weighted F1 score is slightly increasing as ε increases. Differently
to the nonprivate reference implementation, the F1 scores for the SVR with objective
perturbation are much more different to the accuracy. When the nonprivate F1 scores
only diverge in the second decimal place, the F1 scores for the SVR with objective
perturbation can be as much as 3.62 percentage points lower.
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Table 4.5: Standard Errors for accuracy and MIA accuracy from Table 4.4.

ε Accuracy Standard Error MIA Standard Error
0.5 0.46 1.13
1.0 0.31 0.9
2.0 0.49 1.06
4.0 0.31 1.1
8.0 0.25 0.93

Figure 4.5 plots the accuracy and MIA accuracy from Table 4.4 against the reference
nonprivate implementation. Accuracy is plotted in blue and the reference accuracy in
grey. MIA accuracy for this implementation is plotted in orange and the corresponding
accuracy for the nonprivate implementation in grey. For increasing ε the accuracy closes
the gap to the nonprivate implementation. If ε is set to 4.0 or 8.0 the plot is really
close to the nonprivate implementation.
Looking at the accuracy in orange the dip for ε = 2.0 can be seen. However, the
plotting shows that this dip is really small. If ε is increased beyond 4.0, the accuracy
has a steep ascent towards the nonprivate reference. For ε = 8.0 the gap is nearly
closed.
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Figure 4.5: Self-calibrated SVM accuracy (blue) and the MIA accuracy (orange)
against it. For ε ≤ 4.0 the SVR with objective perturbation provides
reasonable protection against the MIA, if ε = 8.0 the MIA performs
nearly as good as against the reference implementation. The accuracy
increases with increasing ε. For ε = 4.0 the SVR with objective pertur-
bation provides reasonable protection against the MIA and accuracy of
the SVM.

Figure 4.6 plots the accuracy (blue) and the MIA accuracy (orange) regarding the
reference approach, which is shown in Table 4.4 in the last two columns. The plotting
shows very well that ε = 4.0 is an excellent trade-off between accuracy and protection
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Figure 4.6: Accuracy (blue) and MIA accuracy (orange) plotted in regard to the ref-
erence implementation. For ε = 4.0 this implementation achieves 87.93%
of the reference accuracy while the MIA accuracy is only 28.56% of the
reference.

against the MIA. Furthermore, the plots show well that increasing ε to 8.0 carries a
large loss in protection while providing nearly no better accuracy.

In Figure 4.7 the boxplots for each evaluated ε in the SVR with objective perturbation
are displayed. In contrast to the boxplots in Figure 4.3 the distance between the lower
and upper whisker is slightly less. Especially ε = 1.0 shows very small fluctuation.
The distance from the average to the upper and lower whisker and as well to the
first and third quartile is nearly the same. Therefore, the boxplot is nearly mirrored
at the median line. For ε = 2.0 it is slightly different. While the distances from
the average to the first and third quartile are nearly identically, the lower whisker at
42.82% has a greater distance to the average at 46.32% than the upper whisker at
49.28%. Furthermore, there is one negative outlier at 40.43%. The boxplot ε = 0.5
shows that choosing ε that small for the SVR in rank pooling is not a viable option
for the accuracy. It is low and the upper whisker is far off the median and there is one
negative outlier with 21.53$ which is not much better than just randomly selecting an
output. At least the lower whisker is much more close to the average. The boxplots for
ε = 4.0 and ε = 8.0 are quite similar to each other. Most parts of the quartiles overlap
each other. This demonstrates really well that increasing ε to 8.0 does not increase the
accuracy much.
Similar to the SVR with output perturbation, the IQR decreases with increasing ε.
While the IQR is 4.31 for ε = 1.0 it decreases to 1.79 for ε = 8.0.

Next, the F1 scores for the SVR with objective perturbation are plotted in Figure
4.8 against the reference F1 scores. Average F1 score is plotted in blue, its counterpart
in grey, which is covered by the reference weighted F1 score in yellow. Weighted F1
score for this implementation is plotted in orange. The plotting shows that the F1
scores increase for increasing ε. However, even for ε = 8.0 the distance to the reference
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Figure 4.7: Boxplots for the SVR with objective perturbation. With increasing ε
the IQR and the distance from lower to upper whisker is decreasing.
The plotting shows really well that there is not much difference between
ε = 4.0 and ε = 8.0 from an accuracy’s perspective.

F1 scores is still quite much.
The difference between the average F1 score and weighted F1 score for this implemen-
tation is more than in the reference implementation but they are still close to each
other. The plotting in Figure 4.8 shows this as the blue and orange plots overlap each
other.

4.3 Differentially Private SVM

In addition to the implementation of a differentially private SVR, this work has also
explored the implementation of an differentially private SVM. During the research, it
became obvious that making the SVR differentially private is not enough to protect
the training data in this ADL recognition. The results shown in this section are in-
dependent from the previously shown results. They are much more technical results
to show what a differentially private SVM can produce. However, the results of these
expirements might be helpful for different scenarios. SVMs are still commonly used
in different areas and medical data is no exception. In the medical field, there is of-
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Figure 4.8: F1 scores for the SVR with objective perturbation. Both scores are close
to each other. F1 scores for objective perturbation are not as close as The
F1 scores (grey and yellow) of the implementation from Nisar et al. [10]
are plotted as an reference. Average F1 score from Nisar is not visible as
it is covered by the weighted F1 score.

ten not much data which makes the usage of deep learning based algorithms difficult.
However, SVM can often produce good results even if there is not much training data.
This makes SVMs still interesting for new research in the medical field.

The first algorithm, which is evaluated, is the output perturbation. Table 4.2 shows
the results. For ε = 0.5 the SVM with output perturbation the accuracy is not much
better than just randomly guessing an outcome.

Table 4.6: Results for SVM with output perturbation. ε has to ≥ 4.0 to achieve good
accuracy. In that case MIA accuracy is not decreased by much.

ε Accuracy Average F1 Weighted F1 MIA Accuracy Accuracy change
0.5 20.69 18.85 18.8 49.97 -67.49%
1.0 27.27 25.73 25.63 47 -57.15%
2.0 41.39 38.95 38.71 49.12 -34.96%
4.0 52.96 50.56 50.25 54.67 -16.78%
8.0 56.84 54.1 53.69 58.1 -10.69%

The accuracy of this (ε,δ)-differential privacy SVM is plotted against the accuracy
of the MIA. The MIA by Salem et al. [8] does not work anymore for ε ≤ 2.0. If ε = 1.0
the SVM has only an accuracy of 27.27%, which is only twice as good as the randomly
guessing of a label. Therefore, if ε = 1.0 the classifier has lost most of its utility and
is not suitable for classification. However, against the MIA by Salem et al. [8], it is
reasonable to choose the greatest ε in which the attack does not work. Out of the
evaluated ε this is the case for ε = 2.0. In that case, the accuracy is 41.39% which is
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way better than the accuracy for ε = 2.0. If ε is chosen even higher, the accuracy of
the SVM is slowly approaching the accuracy of the nonprivate SVM. The accuracy is
52.96% for ε = 4.0 and 56.84% for ε = 8.0. However, the increase of the accuracy is
slowly decreasing, the higher ε is chosen. This is expected, as the output perturbation
should approach the nonprivate version for high ε which is happening as the difference
for ε = 8.0 is with 56.84% to the 63.64% of the nonprivate SVM reasonable close. Com-
pared to the SVM results from Chaudhuri et al. [38] this experiments perform worse
in the accuracy, however it has to be not in her work only a binary SVM was evaluated
and the used dataset was easier to classify. It has to be noted that in this work the
presented (ε,δ)-differential privacy SVM implementations will not exactly achieve the
same optimum as the nonprivate SVM implementation in the libsvm. This is due to
the use of the Huber loss which is an approximation of the hinge loss.
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Figure 4.9: MIA attack does not work for ε ≤ 2.0. In ε ≥ 4.0 the accuracy approaches
the nonprivate accuracy, however the MIA works again. In that case,
SVM accuracy and MIA accuracy increase with same slope.

The price of an accuracy close to the nonprivate SVM is the loss in protection. The
MIA attack starts to work again for ε = 4.0 and ε = 8.0. Interestingly, the increase of
the classifier accuracy and MIA accuracy from ε = 4.0 to ε = 8.0 is a nearly parallel
line. If ε = 8.0 the MIA accuracy is with 58.1% nearly identical to the 59% of the
nonprivate SVM.

Figure 4.10 plots the boxplot for the SVM with output perturbation for each evalu-
ated ε. It can be seen that the range of the achieved accuracy decreases if ε increases
as the distance between lower and upper whisker decreases with an increasing ε. This
is the behavior which is expected as an increased ε decreases the amount of noise. Less
noise should result in less fluctuations, which is the case for the SVM with output
perturbation. In the case ε = 1.0 the lowest accuracy is 17.46% and the highest ac-
curacy is 35.41%. This means that the highest accuracy is twice the minimum. This
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Figure 4.10: Boxplots for SVM with output perturbation. As ε increases the distance
between the whiskers and the IQR decreases. If ε = 8.0 the upper
whisker is close to the nonprivate SVM.

negative outlier is close to the first quartile of ε = 0.5, which hints a high fluctuations.
Even if the outliers are not taken into consideration, the upper whisker is nearly twice
the lower whisker. Moreover, ε = 1.0 has its whiskers furthest away from the median
compared to the other ε. Interestingly, if a boxplot has outliers, they lie below the
lower whisker. No boxplot has an outlier above the upper whisker. One anomaly is
the outlier in accuracy with 49.28% in case ε = 8.0. Normally, you would not expect
such far-off outliers for a high ε = 8.0. This outlier has nearly the same accuracy as
the lower whisker for ε = 4.0.

Figure 4.11 shows the F1 scores of the SVM with output perturbation based on
the nonprivate SVR. The graphs of F1 scores look similar to the graph of accuracy in
Figure 4.9. Compared to the F1 scores in the reference approach by Nisar et al. [10],
it can be seen that the F1 scores for the output perturbation are slightly below the
accuracy of the SVM. Here, on average, the F1 scores are 1 percentage point below
the accuracy. In contrast, the reference approach only has a deviation in the second
decimal place. However, the F1 scores of the SVM with output perturbation are not
so different as to be of concern. The reference and this implementation share that the
weighted F1 score is slightly below the average F1 score, which is due to the not equal
distribution of the classes in the training set. However, in this implementation this
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Figure 4.11: Weighted 1 score for the SVM with output perturbation (orange) and
average F1 score (blue). They show similar scores which at most differ
0.41 percentage points. Both plots have a similar shape as the accuracy
plot in Figure 4.9.

deviation is slightly higher than in the reference approach.

Next, the MBSGD is evaluated. Table 4.7 shows the results of the experiments.

Table 4.7: Results for MBSGD SVM. It performs for small ε well, but does not ap-
proach nonprivate reference accuracy.

ε Accuracy Average F1 Weighted F1 MIA Accuracy Accuracy change
0.5 32.69 31.39 31.29 48.13 -48.63%
1.0 36.68 35.09 43.99 49.59 -42.36%
2.0 41.94 40.51 40.37 54.57 -34.1%
4.0 44.26 42.71 42.55 56.61 -30.45%
8.0 46.32 44.42 44.25 61.58 -27.22%

Figure 4.12 shows the accuracy of this approach and the corresponding MIA accu-
racy. Compared to the previous evaluation of the output perturbation, this algorithm
performs better accuracy-wise for ε ≤ 2.0 but worse for ε ≥ 2.0. The MBSGD has an
accuracy of 36.68% for ε = 1.0 and an accuracy of 41.94%. Especially, the accuracy
for ε = 1.0 is way better than the accuracy of the SVM with output perturbation.
However, the MBSGD accuracy does not really increase if ε is increased beyond 2.0.
The accuracy only increases from 41.94% if ε = 2.0 to 46.32& if ε = 8.0. Graphically
spoken, this increase is very flat in Figure 4.12. Compared to the graph of SVM with
output perturbation in Figure 4.9, the increase there also flattens with an increasing ε
but not as much as in Figure 4.12. In contrast to the output perturbation, the MIA
starts to work again if ε = 2.0 in the MBSGD. Therefore, if a full protection against
this MIA is wanted, ε has to be chosen < 2.0. Similar to the output perturbation,
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the MIA accuracy increases with the same slope as the SVM accuracy. However, the
slope from ε = 4.0 to ε = 8.0 is a little more steep. Interestingly, if ε = 8.0 MIA
slightly performs better against the MBSGD than it does against the nonprivate SVM
implementation.
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Figure 4.12: Accuracy of MBSGD (blue) and the MIA accuracy (orange). The MIA
attack works for ε ≥ 2.0 while the accuracy of the MBSGD does not
really increase. MBSGD with ε = 8.0 performs worse against the MIA
than the nonprivate SVM.

Figure 4.13 shows that the accuracy results show a large range of the upper and
lower whisker. This range, in contrast to the output perturbation, does not shrink
significantly if ε increases. If only the IQR is looked at, this shrinks by a small amount
if ε increases. However, if the IQR of each ε is compared to its equivalent in the output
perturbation, it is significantly greater. In addition, the IQR shrinks only for a small
amount if ε increases. Furthermore, interesting is the fact that the upper quartiles for
ε = 2.0 and ε = 4.0 are close to each other at 46.53% and 47.13% respectively. Both
boxplots share this also for their upper whisker is close to each other at 52.15. What
really stands out is the fact that the lower whisker for ε = 2.0 is below the whisker of
ε = 1.0. In contrast, ε = 4.0 and ε = 8.0 do not have this far off lower whisker.

Figure 4.14 shows the weighted F1 score and the average F1 score for the MBSGD.
The difference between the weighted F1 score and average f1 score is really small. The
difference is at most 0.14%. Since the classes in the testing set are mostly equally split
with a distribution from 13.9% to 15.3% this difference between the weighted F1 score
and the average F1 score is expected.

Experiments with SVM with objective perturbation have shown that scaling ε with
1
10

to satisfy Theorem 2.3.2 in the OvO classification is not tight enough as a boundary.
The accuracy of this SVM implementation breaks down completely and shows no utility
at all.
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Figure 4.13: Boxplots for the MBSGD. Each boxplot has a great distance between
its whiskers. IQR does not decrease much if ε increases.
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Figure 4.14: Average F1 score (blue) and Weighted F1 score (orange )for the MB-
SGD. They have nearly identical values, the most difference is 0.17 per-
centage points if ε = 8.0. Both scores have a similar graph to the
accuracy graph in Figure 4.12.
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Chapter 5

Discussion

This work has shown that rank pooling is vulnerable to MIA. To use rank pooling in
open scenarios, it has to be protected against such attacks. This work has evaluated
two algorithms which provide privacy. However, using these algorithms requires to
make a trade-off between accuracy and protection. Therefore, one goal of this work
was to evaluate if it is possible to find a trade-off between accuracy and protection.
Hence, the generated noise should be as less as possible while still being enough to
mask the used data.

Firstly, both evaluated setups, SVR with the output perturbation and SVR with the
objective perturbation, have shown that they can provide so much protection against
the MIA that it nearly does not succeed at all. However, this protection comes with the
cost that the accuracy breaks down to its half. Interestingly, the output perturbation
performs slightly better on average, but the objective perturbation is more stable in its
results. As the boxplot in Figure 4.7 shows, the majority of the results for the objective
perturbation are close to the average. SVR with output perturbation should perform
slightly perform worse than the objective perturbation as the objective perturbation
is the more advanced algorithm. However, the output perturbation performs slightly
better for on average ε = 1.0. Even though the difference in the median is nearly
negligible with 35.74% to 35.55%, output perturbation has the single better results as
its upper whisker is at 39.47% compared to 37.56%. Objective perturbation is a bit
more stable as the IQR and the distance between the whiskers is smaller. However,
since these algorithms rely on randomness, choosing the algorithm which is more stable
in its results is preferable. Even though the output perturbation has shown a higher
upper whisker, this does not automatically guarantee that it cannot happen for the
lower whisker.
Both algorithms have shown interesting results for ε = 2.0. While the output pertur-
bation shows the same protection as for ε = 1.0, the objective perturbation performs
even slightly better.
The results have shown that both algorithms can provide a good trade-off between
accuracy and protection. For ε = 4.0 the objective perturbation has an accuracy loss
of −12.07% which fully acceptable. On the other side, the MIA accuracy decreases
by −71.44% which makes the attack close to being nonefficient. More protection can
be achieved by decreasing ε to 2.0. In that case, the MIA accuracy is decreased by
−86.76% for the objective perturbation and −90.32%. However, this comes with ac-
curacy drop of −27.22% and −27.77% respectively. This loss is too much in respect
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to the protection gain. If more protection is wanted than what ε = 4.0 provides it is
recommended to set ε = 2.0 < ε ≤ 4.0.
The objective perturbation has performed on average slightly better than the output
perturbation in the performed experiments. This proves the theoretical approach that
the objective perturbation is the more advanced algorithm and should therefore result
in better results.

Finally, this work also evaluated implementing the output perturbation and objec-
tive perturbation for an SVM. Even though these results are not directly in the scope
of this work, they show some interesting findings. Firstly, in contrast to the SVR,
the objective perturbation does not produce any acceptable results. This is probably
caused by choosing the scaling of ε = ε/10 to satisfy Theorem 2.3.2. It is not a tight
boundary and therefore finding a tighter boundary should increase the results heavily.
For both working algorithms, the output perturbation and the MBSGD, the results
show a large fluctuation in the results. The boxplots have shown large distances be-
tween the whiskers. One possible cause for this is the usage of OvO. Since the noise
has to be applied to each binary classifier, the chance for choosing unlucky randomness
increases. In the SVR experiments, this problem is tackled by averaging over 20 runs
and there is clearly only once randomness is applied. It would be interesting to see if
increasing the number of iterations decreases this fluctuation. Another possible solu-
tion to fix this problem is to change to OvR training which was briefly experimented
with. It was discarded since the reference implementation of an SVM by sklearn also
relies on OvO training and the accuracy of the classifier was decreased by a consider-
able amount.
For the output perturbation using Gaussian noise heavily increased the accuracy of the
SVM compared to using Laplacian Noise. If SVM with output perturbation is com-
pared against the MBSGD, the MBSGD performs much better for small ε. While the
SVM with output perturbation has in that case a very low accuracy, MBSGD has never
an accuracy below 50% compared to the reference approach. However, this comes at
the price of a large distance between the whisker and a high IQR. This leads to the
conclusion that the MBSGD is not that stable for an SVM.
Finally, one note, which is out of the context of this work, but might be interesting,
is that the training time for these algorithms is a problem. Neither of the evaluated
algorithms takes usage of the SMO-algorithm which is heavily recommended for an
efficient implementation.
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Conclusion and Future Work

All in All the experiments have shown that is it possible to achieve differential pri-
vacy for the recognition of ADL and the rank pooling approach. However, it comes
with a cost in accuracy. This trade-off is the most difficult for someone who wants
to implement differential privacy. This work has shown that you can achieve 83.73%
accuracy of the nonprivate implementation while achieving a 71.44% better protec-
tion. However, this protection is only for the evaluated MIA. Differential privacy and
possible attacks are still an ongoing research area and in the foreseeable future there
will be probably attacks which work even better against an SVM or an SVR. On the
other hand, research on differential privacy is catching up fast and future work can and
should increase not only the protection but also the accuracy.

In the future, the accuracy of the classifier has to be improved. The work by Nisar
et al. [10] showed that rank pooling can be used for the recognition of ADL. However,
having an accuracy of at best 63.64% in a hold-out setting and 68.54% in a leave-one-
subject-out cross-validation is not enough for real world usage. The approach has to
generalize more to classify data from unseen subjects better. Furthermore, increasing
the accuracy in the nonprivate setting will also increase the accuracy of the algorithms
with differential privacy since their accuracy is depending on the nonprivate optimum.
There are some prototypical approaches to increase the accuracy which look promising.
For example, instead of using a holdout-setting, where half of the subjects are used for
training and the other half is used for testing, the split is applied differently. In this
case, each subject performs the same tasks at different times. Now, instead of splitting
based on the subjects, splitting occurs based on the recording time. That means, all
data from the first recording are used for training and all data from the second record-
ing are used for testing. This increases the number of different subjects the model
is trained and should benefit the generalization of the model. However, the splitting
between subjects instead of recordings is a bit more close to a possible real world usage.

Another approach to increase is to change the classifier from an SVM to a classifier
based on a DNN. As briefly mentioned in Section 2.2, deep learning has shown good
results in the field of activity recognition. In the scope of ADL, two models are inter-
esting: the Long short-term memory (LSTM) architecture and a convolution neural
network (CNN). It is of course possible to build a CNN LSTM but in the scope of this
future work, a CNN is not built in the LSTM architecture.
LSTM networks have the ability to identify temporal correlations. This makes them
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intriguing for activity recognition as the sensor data for activities has temporal cor-
relations since activities take some time. Rank pooling takes also advantage of this
temporal correlation. First, experiments with LSTM are showing promising results.

Using neural networks has one disadvantage. Neural networks have a nonconvex loss
function. In contrast to convex loss functions, they can have several local optimums.
On the other hand, convex loss functions only have a single local optimum, which is
also the global optimum. Finding the global minimum of convex loss functions is com-
putationally appealing. Finding the global minimum of nonconvex loss functions is
not. Therefore, mainly gradient descent is used to find a local minimum in nonconvex
loss functions. On the first hand, this does not sound bothersome since in most cases
finding a local minimum instead of the global minimum is good enough to achieve
satisfying results.
However, from a security point of view using nonconvex loss functions is a problem.
Guaranteeing privacy in nonconvex loss functions is much more difficult than in convex
loss function. Since gradient descent can be stuck in a local minimum which it cannot
escape since its separated from other optima by a mountain or a ridge, using gradient
descent in nonconvex loss functions results in a large amount of leakage. Therefore,
nonconvex loss functions require different algorithms which guarantee differential pri-
vacy. For example, in this work the presented ERM with output perturbation and
ERM with objective perturbation require a convex loss function.

Further work should also investigate finding a better scaling for the objective pertur-
bation. The work of Kifer et al. [53] showed promising improvements for the objective
perturbation but requires difficult calculations to use the correct parameters.
Furthermore, objective perturbation requires the usage of the naive implementation
of an SVM. This leads to long training times for even a small amount of data. The
calculation of an SVM can be improved with the SMO-algorithm, which is currently
the fastest algorithm for an SVM. Currently, there is no research on implementing the
objective perturbation into the SMO-algorithm. Finding such an implementation can
improve the results of the objective perturbation drastically.
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