
VULPEX: Vulnerable path exploration through dynamic symbolic
execution

VULPEX: Erkundung verwundbarer Pfade mittels dynamischer symbolischer
Ausführung

Masterarbeit

verfasst am
Institut für IT Sicherheit

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Nils Loose

ausgegeben und betreut von
Prof. Dr.-Ing. Thomas Eisenbarth

mit Unterstützung von
M. Sc. Florian Sieck

Lübeck, den 04.11.2022

Eidesstattliche Erklärung

Ich erkläre hiermit anEides statt, dass ich diese Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen undHilfsmittel benutzt habe.

Nils Loose

– ii –

Zusammenfassung

In der heutigen digitalisierten Welt, in der mehr Unternehmen denn je sen-
sible Daten über Anwendungsschnittstellen (APIs) preisgeben, wird es im-
mer schwieriger Sicherheit zu gewährleisten. Eine kürzlich durchgeführte
Studie des Open Web Application Security Project (OWASP) hat ergeben,
dass 94% der untersuchtenWebanwendungen eine Form von Code-Injection-
Schwachstelle enthalten. Injektionsangriffe stellen eines der drei größten Si-
cherheitsrisiken fürWebanwendungendar.Der Einsatz vonPenetrationstests
zur Bewertung der Sicherheit exponierter Endpunkte ist jedoch kostspielig
und zeitaufwändig, weshalb der Bedarf an automatischen Sicherheitsbewer-
tungen steigt. Die symbolische Ausführung ist eine Technik zur systemati-
schen Erkundung des Zustandsraums eines Programms, welche auf der Auf-
zeichnung symbolischer Constraints von Verzweigungsbedingungen basiert.
Jaint, eine symbolische Ausführungsengine verwendet eine spezielle Imple-
mentierung der Java VirtualMachine (JVM) und hat kürzlich das Potential von
symbolischen Ausführungsengines für das Auffinden von Schwachstellen in
Java-basierten Webanwendungen demonstriert. Java war im Jahr 2021 eine
der fünf am häufigsten verwendeten Programmiersprachen und wird oft in
Webanwendungen von Unternehmen eingesetzt. In dieser Arbeit wird SWAT
vorgestellt, welche auf der symbolischen Ausführungsengine CATG aufbaut.
SWAT ist die erste instrumentationsbasierte dynamische symbolische Aus-
führungsengine, die auf die Erkennung von Schwachstellen in Java-basierten
Webdiensten zugeschnitten ist. SWAT nutzt eine lose gekoppelte Architek-
tur, basierend auf der symbolischen Ausführungsengine COASTAL. Das Sy-
stem ist für die Anwendung auf Webservices zugeschnitten, indem der zu-
grundeliegendeWebserver als Harness verwendet wird. SWAT bietet Adapter
für schnelle und automatische Initialisierung der symbolischen Ausführung
von Anwendungen, diemit gängigen Frameworks wie Spring erstellt wurden.
In der Code-Injection-Kategorie des OWASP-Benchmarks erreicht SWAT ei-
ne Genauigkeit von 0,76 und ein F1-Maß von 0,86. SWAT schneidet somit nur
wenig schlechter ab als Jaint, weist allerdings eine Verringerung der Laufzeit
um den Faktor 60 auf.

– iii –

Abstract

Securing today’s digitalized world, wheremore entities than ever expose sen-
sitive data through application programmable interfaces (APIs), is becom-
ing increasingly difficult. A recent study by the open web application secu-
rity project (OWASP) found 94% of web applications under evaluation to con-
tain some form of injection vulnerability, placing injection attacks among the
top three web application security risks. However, using penetration testing
to evaluate the security of exposed endpoints is costly and time-consuming,
raising the need for automatic security evaluations. Symbolic execution is a
language-specific technique to systematically explore the state space of a pro-
gramby recording symbolic constraints of branching conditions. Jaint, a sym-
bolic execution engine utilizing a custom implementation of the Java Virtual
Machine (JVM), has recently shown the potential of symbolic execution en-
gines to find vulnerabilities in Java-based web applications. Java was one of
the five most used programming languages in 2021 and is commonly utilized
in enterprise-grade web applications. In this thesis, we present SWAT, our
symbolic web application testing platform, building upon the CATG symbolic ex-
ecution engine. SWAT is the first instrumentation-based dynamic symbolic
execution engine tailored to detecting vulnerabilities in Java-based web ser-
vices. We implement a loosely coupled architecture similar to the symbolic
execution engine COASTAL, using the underlyingweb server as a harness. We
offer adapters to quickly and automatically initialize symbolic execution on
targets built with popular frameworks such as Spring. On the injection cate-
gory of the OWASP benchmark, we achieve a precision of 0.76 and an F1 score
of0.86, scoring slightly lower than Jaintwhile reducing the runtime by a factor
of 60.

– iv –

Acknowledgements

Iwant to thank Prof. ThomasEisenbarth and Florian Sieck for their excellent supervision
of this thesis. In addition, Iwant to thankFelixMächtle, YaraSchütt, andLorenaRudolph
for fruitful discussions and feedback.

– v –

Contents

1 Introduction 1

2 Background 4
2.1 Symbolic Execution 4
2.2 Java Virtual Machine 11
2.3 Java Vulnerabilities 17

3 Related Work 19
3.1 Symbolic Execution Engines 19
3.2 Web Service Fuzzing 27

4 Symbolic Web Application Testing 28
4.1 Architecture 29
4.2 Instrumentation 31
4.3 Symbolic Executor 35
4.4 Symbolic Initalization 45
4.5 Symbolic Explorer 49
4.6 Evaluation 52

5 Vulnerability Detection 57
5.1 Identifying Vulnerabilities 57
5.2 Evaluation 59
5.3 Transferability to Real World Applications 63

6 Conclusion and Outlook 65

Bibliography 67

A Appendix 75

– vi –

1
Introduction

The last decade has seen an ever-increasing growth of web application programmable
interface (API) deployment and usage among companies and organizations, providing
services as web applications using APIs. APIs provide a set of protocols and definitions
that allow services to communicate via the provided standards and eases the connection
of different software without knowing the specific implementation. APIs are extensively
used in web-facing applications to provide communication between different services
and components, such as front and backends. As these publicly exposed services often
deal with sensitive personal, financial, or medical information, their security is vital.
Without proper security evaluation, applications may fall victim to a variety of attacks.
Injection attacks (Figure 1.1) are ranked among the top three vulnerabilities present in
web applications, with 94% of evaluated applications having some form of injection flaw
[53]. However, manual code review and penetration testing are labor-intensive and of-
ten incomplete, raising the need for automatic evaluation frameworks like static (taint)
analysis [41, 1], fuzzing [4, 3, 45, 18, 22], or symbolic execution [54, 29, 1, 45, 49]. Fuzzing
is a fast approach that can quickly evaluate several branches from the target state space.
However, without guidance, fuzzing performance tends to stagnate as branching condi-
tions becomemore specific. Symbolic execution can systematically and formally explore
a target’s state space throughmathematicallymodelingbranching conditions. Themodel
allows symbolic execution to reach deeper parts of the state space and enablesmore thor-
ough testing. Recent advances in constraint solving build the foundation required to rea-
son about strings as part of the constraints of a symbolic execution engine [26, 6]. String
reasoning is a key tool required to explore the state space of web applications effectively,
as most interactions between the user and the system are using strings. While many
widely adopted programming languages for developing web services exist, this work fo-
cuses on Java-based applications. Java [2] was one of the five most used programming
languages in 2021 [63] and is used especially in large-scale enterprise software.

– 1 –

1 Introduction

Hospital

Patients

Employees

Finances

A
P
I

Clients

{valid-auth-token}

/api/auth/nurse/{creds}

{valid-auth-token}

/api/auth/nurse/’or 1=1 –

Figure 1.1: Example of the interaction between clients and an API exposed by a critical
infrastructure organization. The malicious actor shows a possible SQL injection attack
retrieving a valid authentication token without providing credentials.

Web service architectures typically rely on many external frameworks and libraries to
handle, for example, the web server or database connections. Targets with external de-
pendencies tailor well to dynamic symbolic execution where the target application is ex-
ecuted, in contrast to static symbolic execution. Values originating from areas the sym-
bolic execution engine does not cover can be used since the concrete value is available.
Java-based dynamic symbolic execution engines rely on one of two techniques to drive
symbolic execution. Eithera customimplementationof the JVM[31, 72] isused toobserve
the execution [55, 49, 31, 43, 48] or symbolic handling is added through instrumentation
[64, 35, 59, 36]. Mues et al. have demonstrated with Jaint that symbolic execution is a ca-
pable technique to detect vulnerabilities in Java web applications [49]. However, the re-
liance on a custom JVMhas several drawbacks, such as beeingbound to a specific version.
COASTAL has recently demonstrated the potential of a loosely coupled instrumentation-
based symbolic execution engine [36]. However,COASTAL relies on anactive harness and
spawns the target application inside the harness.

In this thesis, we introduce SWAT, an instrumentation-based dynamic symbolic execu-
tion engine based on CATG [64]. SWAT is developed to efficiently find vulnerabilities in
Java-basedweb services. During this thesis,we focus onfinding injection vulnerabilities.
We combine a loosely coupled design with web-specific symbolic harnesses to effectively
evaluateweb services. Webuilt on theweb server’s request handling to drive symbolic ex-
ecution inside the natively running application. In detail, we introduce a new symbolic
backend that utilizes the JavaSMT [6] framework to model constraints in the standard-
ized SMT-Lib format [9]. With the new symbolic backend, we gain solver independence,
support an additional 55 instructions symbolically, and introduce several new features.
New features include symbolic overflowmodeling, symbolicmodeling of exceptions, and
a correctmodel of the truncated division utilized by the JVM.Through our revised instru-
mentation core,we supportmodern language features such as lambda expressionswhile
reducing the instrumentation footprint by 20%. The decoupled symbolic executor has
been reworked to allow for parallel symbolic execution in different threads and provides
functionality to easily initialize symbolic execution using either two new generic drivers
or one of two web-specific drivers. We include web-specific instrumentation drivers for
the Spring framework [68] and for javax servlets. Our new symbolic explorer is a stan-
dalone application that exposes endpoints to receive execution traces from the symbolic

– 2 –

1 Introduction

executor. By using a custom type of execution trace, we are able to successively build an
execution tree ofmultiple symbolic executions inside the symbolic explorer. We evaluate
the effectiveness of our symbolic engine by providing results from state-of-the-art veri-
fication tools, and SWAT on a subset of the SV-Comp 21 [15] benchmark. By introducing
symbolic-based vulnerability detection, we are able to achieve an F1 score of 0.86 at de-
tecting injection vulnerabilities on theOWASP benchmark [51]. To summarize, ourmain
contribution are:

– SWAT, an instrumentation-based symbolic execution engine, based on CATG [64].
– A decoupled symbolic executor and symbolic explorer.
– Thefirst instrumentation-based sybmolic execution engine that is tailored tofinding
vulnerabilities in Java-based web services.

– An extensive evaluation on a benchmark for software verification and a benchmark
for vulnerability detection demonstrating the capabilities of SWAT.

The structure of this thesis is split into six chapters. In Chapter 2, we introduce con-
cepts used throughout the remainder of the thesis, including a brief introduction to sym-
bolic execution, an overview of the Java virtual machine, and the bytecode instruction
set. Lastly, Java-based web vulnerabilities are discussed. In Chapter 3, we provide an
overviewand adiscussion of existing symbolic execution engines for Java andgive a short
digression into fuzzing and state selection heuristics for symbolic execution. We intro-
duce SWAT,our symbolicweb application testing platform inChapter 4. At the end of the
chapter, we evaluate the performance of SWAT on SV-Comp [15], a benchmark for eval-
uating verification tools. In Chapter 5, we discuss functionality specific to identifying
vulnerabilities and evaluate the effectiveness of SWAT at finding injection vulnerabilities
using the OWASP Benchmark [51]. Lastly, we summarize the evaluations and highlight
limitations and future work in Chapter 6.

– 3 –

2
Background

This chapter introduces concepts and techniques that are used in the following chapters.
To begin with, a short summary of symbolic execution and satisfiability modulo theory
(SMT) is given, followed by an introduction of Java bytecode and the JVM specification.
Lastly, the bytecode instrumentation is introduced, and Java-based web vulnerabilities
are highlighted.

2.1 Symbolic Execution

Systematically exploring a program’s state space is a valuablemethodology in various ap-
plications ranging from software verification or test generation to bug finding or vulner-
abilitydetection. However,findingcorrect inputs to exploreasmanybranchesaspossible
in as little time as required is not trivial. A commonly used technique is fuzzing or fuzz
testing. While fuzzing, the application is rapidly tested against various mutated values.
Values are either randomly mutated when no context is available or mutated based on
some heuristic built on additional information, such as the program’s output or cover-
age information. However, while fuzzers are generally quite fast per test case, the depth
they can reach is often relatively shallow because the provided values are not specifically
tailored to the branches inside the program. Relying on random mutations often leads
to a falloff in newfound branches as the values required to reach new branches increase
in specificity. Symbolic execution aims to mitigate the falloff by closely monitoring the
application and calculating new values that reach specific branches.

Symbolic execution is a technique to reason how specific values influence the control flow
of an application by tracking metadata about the program state. Instead of concretely
executing the target application, symbolic execution models program variables as logi-
cal expressions. Symbolic expressions represent the symbolic value of variables and their
relations. Path constraints add bounds to symbolic expressions enforced by branching
points in the target application. The execution state is tracked by maintaining symbolic
expressions and path constraints that are explained below. The notations used in this
section are adapted from Eisenbarth [66].

– 4 –

2 Background

0 public static void main(String [] args){
1 int x = (int) args [0] ;
2 int y = (int) args [1] ;
3 int z = 2 ∗ x + y;
4 i f (z < 42){
5 System.out. println("Path 1") ;

} else {
6 i f (x > y){
7 System.out. println("Path 2") ;

} else {
8 System.out. println("Path 3") ;

}
}

}

Figure 2.1: Exemplary Java main function to illustrate symbolic execution. The func-
tion reads two integer values from the command line arguments, performs simple arith-
metics, and contains two branching possibilities to illustrate symbolic expressions and
path constraints. The symbolic state for each step is shown in Figure 2.2.

Themetadata tracked using symbolic execution is stored in the symbolic state. The tracked
data includes the path constraints 𝜋, the symbolic expressions store 𝜎, and a variable
mapping between symbolic variables and actual variables. Often symbolic execution en-
gines also store the concrete values of variables inside the symbolic state.

Symbolic expressionsmodel the state of the variables inside the application. These expres-
sions are stored in the symbolic expression store 𝜎. When new variables are introduced
without a fixed value, the free variable is assigned an 𝛼i value. Typically only variables
that, in some form, are under the user’s control are marked as free variables whose ini-
tial value can bemodified. In the example shown in Figure 2.1, lines 1 and 2 initialize two
integers with values supplied through the command line; hence these values are under
the user’s control and are modeled accordingly as:

𝜎 = {𝜙1 = 𝛼1, 𝜙2 = 𝛼2}
To maintain the relation between symbolic expressions and actual variables, an addi-
tional variable mapping is stored where the actual variable maps to its symbolic coun-
terpart: x → 𝜙1 and y → 𝜙2. Each operation thatmanipulates values has to bemodeled
symbolically as symbolic expressions. Line 3 in Figure 2.1 introduces a new variable that
performs amathematical operation on the previously defined variables. Since the opera-
tiondoesnot introducebranchingbehavior, the effect ismodeledas symbolic expressions𝜙 in the symbolic expression store as:

𝜎 = {𝜙1 = 𝛼1, 𝜙2 = 𝛼2, 𝜙3 = 2 ⋅ 𝜙1 + 𝜙2}
with an additional variablemapping z → 𝜙3. The symbolic expressions stored alongside
the variable mapping and path constraints for the example at hand are also visualized in

– 5 –

2 Background

Figure 2.2. Each node represents the corresponding line number from Figure 2.1, and
the updated symbolic state is listed along each branch. Each new entry ismarked in blue
for visibility.

When symbolic execution encounters a branching possibility such as an if-clause, the
previous symbolic state is duplicated. New path constraints are added to both duplicated
statesmodeling the corresponding branching condition. Theduplication at each branch-
ing possibility results in a state space explosion because the resulting tree can have an ex-
ponential number of branches in the depth of the tree. Figure 2.1 has the first branching
possibility in line 4, where z < 42 is checked. The equation is added to the path con-
straints of the two forked symbolic states so that for one path constraint, the inequality
holds, and for the other, it does not. In the example, the path constraint

𝜋 = 𝜙3 < 42

is added to the symbolic state modeling the path where the check evaluates to true. The
negated constraint is added to the associated symbolic state to model the other branch:

𝜋 = ¬(𝜙3 < 42)= 𝜙3 ≥ 42

When a second branching condition is met, both need to hold to allow the execution to
follow that path. Hence each new branching possibility is added to the existing path con-
straints using a logical and So for line 6, the path constraints are updated to

𝜋 = 𝜙3 ≥ 42∧ 𝜙1 > 𝜙2

for the path evaluating to true and

𝜋 = 𝜙3 ≥ 42∧ 𝜙1 ≤ 𝜙2

for the other. The forking behavior is also visualizedwith the symbolic state in Figure 2.2.

– 6 –

2 Background

1

2

3

4

56

7 8

𝜋 = ∅𝜎 = {𝜙1 = 𝛼1}
x → 𝜙1

𝜋 = ∅𝜎 = {𝜙1 = 𝛼1, 𝜙2 = 𝛼2}
x → 𝜙1, y → 𝜙2

𝜋 = ∅𝜎 = {𝜙1 = 𝛼1, 𝜙2 = 𝛼2, 𝜙3 = 2 ⋅ 𝜙1 + 𝜙2}
x → 𝜙1, y → 𝜙2, z → 𝜙3

𝜋 = 𝜙3 < 42𝜎 = {𝜙1 = 𝛼1, 𝜙2 = 𝛼2, 𝜙3 = 2 ⋅ 𝜙1 + 𝜙2}
x → 𝜙1, y → 𝜙2, z → 𝜙3

𝜋 = 𝜙3 ≥ 42𝜎 = {𝜙1 = 𝛼1, 𝜙2 = 𝛼2, 𝜙3 = 2 ⋅ 𝜙1 + 𝜙2}
x → 𝜙1, y → 𝜙2, z → 𝜙3

𝜋 = 𝜙3 ≥ 42∧ 𝜙1 ≤ 𝜙2𝜎 = {𝜙1 = 𝛼1, 𝜙2 = 𝛼2, 𝜙3 = 2 ⋅ 𝜙1 + 𝜙2}
x → 𝜙1, y → 𝜙2, z → 𝜙3

𝜋 = 𝜙3 ≥ 42∧ 𝜙1 > 𝜙2𝜎 = {𝜙1 = 𝛼1, 𝜙2 = 𝛼2, 𝜙3 = 2 ⋅ 𝜙1 + 𝜙2}
x → 𝜙1, y → 𝜙2, z → 𝜙3

Figure 2.2: Symbolic state for all paths and steps in the exemplary function shown in Fig-
ure 2.1. The numbers in the nodes correlate to the line numbers, and along each edge, the
current symbolic state is shown, where𝜋 stores the path constraints, 𝜎 the symbolic ex-
pressions and expressions of the form x → 𝜙1 are variable mappings between symbolic
variables and the variable names in the source code. The path constraints are updated
at each branching point, here in line 4 and line 6, with constraints that model the new
bounds on the symbolic expressions required to reach that branch. The symbolic expres-
sions are updatedwhen symbolic variables are altered or introduced, as seen in lines 1, 2,
and 3.

After symbolically trackingparts of theprogramor the entireprogram,generating inputs
for a new path can be achieved by substituting all symbolic expressions in the path con-
straints. For example, generating inputs for the eights node from Figure 2.2 produces
inputs that reach line 8 of the code shown in Figure 2.1 as shown below. The symbolic
expression store is given as:

𝜎 = {𝜙1 = 𝛼1, 𝜙2 = 𝛼2, 𝜙3 = 2 ⋅ 𝜙1 + 𝜙2}
Using the expressions from the expression store, we can substitute all symbolic variables

– 7 –

2 Background

inside the path constraints to obtain the actual constraint equation:

𝜋 = 𝜙3 ≥ 42∧ 𝜙1 > 𝜙2 (2.1)= 2 ⋅ 𝛼1 + 𝛼2 ≥ 42∧ 𝛼1 > 𝛼2 (2.2)

Such equations can be checked for satisfiability, that is, whether a variable assignment
exists that satisfies the equations and solved for inputs that satisfy the constraints using
solvers such as Z3 [26] as further discussed below. One valid model would be

𝛼1 = 20 ∧ 𝛼2 = 2

Using the variable mapping stored in the symbolic state, we can reach line 8 by execut-
ing the program with x = 20 and y = 2. Solving can be done for any symbolic state; in
particular, the state does not have to be directly above a leaf node. When an inner node
is selected, the behaviour after the selected node is undetermined. However, solving for
states higher up the tree can have various benefits, such as easier solving due to fewer
constraints, and is, as discussed below, required for offline symbolic executionwhere the
tree is not fully built. However, not all branches need to be reachable; hence the con-
straints can also be unsatisfiable, in which case the solver cannot determine new values,
and a different branch has to be selected.

There are several different flavors of symbolic execution. Static anddynamic symbolic ex-
ecution in online and offline fashion are discussed below, with their respective benefits
and drawbacks. The traditional variant of symbolic execution is static symbolic execution
(SSE).When using SSE, the application is interpreted or emulated symbolically by prop-
agating the symbolic state throughout the application instead of being executed. The
symbolic execution engine interprets the program in a lifted representation like LLVM
bitcode [39] or Java bytecode or on a specific instruction set like x86 to generate the con-
straints and propagate the symbolic state. By emulating, the target representation is
not bound to the actual host architecture of the symbolic execution engine. Emulation
allows for more versatility while compromising on performance because the emulation
step introduces additional overhead. Using a lifted representation often makes the im-
plementation easier due to a reduced instruction set and allows a broader range of archi-
tectures or languages to be tested. When using static symbolic execution, the program
state is usually forked for each branchingpoint as shown in Figure 2.2, allowing for paral-
lel exploration of each branch. Parallel exploration is called online execution; on the other
hand, offline execution is when only a single branch is followed and tracked at a time. On-
line execution is usually faster but requires significantmemory,while offline execution is
slower but much more memory efficient because only a single state needs to be tracked.
Onemajordrawbackof static symbolic execution is thatwhen the systemunder test relies
on external libraries or frameworks, or the program is not entirely symbolically tracked,
each call to an uninstrumented region has to be mocked. Mocking is not suitable to our
scenario because web services typically rely on a large external software stack to provide
theweb server, database connections, and other functionalities that are very difficult and
impractical to mock. Such scenarios cater better to dynamic symbolic execution, as dis-
cussed below.

– 8 –

2 Background

Dynamic symbolic or concolic execution is a particular flavor of symbolic execution that has
recently gained more attention. Dynamic symbolic execution runs the application with
concrete values while maintaining the symbolic state and the path constraints as meta-
data, so the target program is concretely executed and symbolically tracked. While dy-
namic online execution is possible, it is typically performed offline, so only the concretely
executed branch is symbolically tracked. Offline execution means that the tree shown
in Figure 2.2 is not fully built, but a new branch is added with each run. The path con-
straints of a branching point that has been visited are flipped to explore the previously
unexploredbranch. Only exploring a single branchper runmakes offline executionmuch
more scalable. Additionally, since concrete values are available, only the user-controlled
values need to be symbolically tracked, resulting in smaller constraints that are easier to
solve. Dynamic symbolic execution also offers the advantage that the engine can work
on targets that rely on information from untracked sources like databases or libraries
because the concrete values are available in contrast to static symbolic execution. The
main downside of dynamic symbolic execution is that the number of reached branches
depends on the initial seed values because the engine can only explore one flip at a time
from the initial seed. Yet, due to the aforementioned advantages, we focus on offline dy-
namic symbolic execution.

Offline symbolic execution requires a strategy to select the next branch to explore. Such a
strategy is not required inonline execution as eachbranch is explored inparallel. Theper-
formance of symbolic execution regarding its use cases, such as bug detection or cover-
agemaximization, is highly dependent on the heuristic used for state selectionwhen the
provided time is not enough to explore all branches. Heuristics can select new branches
depending on the structure of the tree and leverage additional information from the sys-
temunder test or from the constraints to aid the selection. While crafting a heuristic that
proves effective in maximizing the number of vulnerabilities found is outside the scope
of this work, a selection of already existing heuristics is summarized in Section 3.1.

Satisfiability modulo theories (SMT)

Path constraints recorded during symbolic execution are (in)-equalities formulated as a
logical formula that encodeswhetheraparticular assignmentof variablespassesabranch-
ing point when executed. To be able to generate new assignments that reach previously
unexplored branches, the path constraints need to be evaluated. Checking if a specific
branch is reachable equates to whether the constraints have an assignment of variables
that fulfill the inequalities, or in other terms, whether the equations are satisfiable or
not. If a branch is reachable, new assignments can be generated by finding an instanti-
ation of all free variables within the constraints to satisfy the path constraints under the
instantiation. An assignment of variables can then be used to execute and explore pre-
viously unexplored branches. Evaluating the satisfiability of a boolean formula is known
as the boolean satisfiability problem (SAT). Generally, the SAT problem isNP-complete
[23]; however, fast solvers for practical instances exist that go beyond checking if the in-
stance is satisfiable and also provide amodel that fulfills the constraints [26, 11, 8]. Given

– 9 –

2 Background

a propositional logic formula 𝜙, SAT is the problem of determining whether an assign-
ment exists that satisfies the given boolean formula. However, arbitrary constraints de-
rived from instructions using symbolic execution are not directly applicable to boolean
expressions due to, for example, mathematical operations on integers or floating point
values, or the usage of arrays. While these constraints also evaluate to true or false the
formulamay contain non boolean variables. The satisfiability modulo theories (SMT) are
an extension of the SAT problem and generalize the boolean satisfiability problem by in-
troducing predicates over a set of non-boolean variables frompredefined theories. Com-
mon theories include the integer theory, the floating point theory, or the theory over ar-
rays. Each theory introduces a set of predicates and functions that model the operations
allowed in the respective theory. Each predicate p ∶ X → {0, 1} is a function with an
arbitrary domainX and a binary codomain. Within the domainX, functions with a non-
boolean codomain, such as a predicate function+ ∶ ℝ × ℝ → ℝ for addition, are also
allowed. A formula 𝜙 in first-order logic is considered an SMT instance if all values are
either binary values or predicate functions with a binary codomain. Given a formula 𝜙
and a theory Τ, the SMT problem is determining whether amodel over Τ exists so that 𝜙
is satisfiable.

; Variable declarations
0 (declare−fun x () Int)
1 (declare−fun y () Int)
2 (declare−fun z () Int)

; Constraints
3 (assert (= z (+ (∗ 2 x) y)))
4 (assert (>= z 42))
5 (assert (> x y))

; Solve
6 (check−sat)
7 (get−model)

Figure 2.3: SMT instance in SMT-LIB format [9] for the path constraint shown in Equa-
tion 2.1. Thefirst block defines the variables and assigns a theory, here the integer theory.
The second paragraph contains assert statements that need to be satisfied. At last, the
given instance should be checked for satisfiability and a model should be produced that
satisfies the given constraints.

SMT-LIB [9] offers a formalization of SMT theories and syntax to facilitate a unified lan-
guage recognized by a variety of popular SMT solvers such as Z3 [26] or CVC5 [8]. The
standard enables interchangeability between solvers because they allow the same syntax
as inputs. Previously, solvers such as CVC4 [11] had a native input language specific to
the solver. Due to recent advancements, SMT-LIB [9] and Z3 [26] support string theo-
ries, enabling symbolic execution to utilize native string modeling in the SMT-LIB for-
mat. Following the example in Figure 2.1 and trying to solve for the constraint shown in
Equation 2.1, the statement in SMT-LIB format is shown in Figure 2.3. Variables are de-

– 10 –

2 Background

clared within their theory, which can be seen in lines 0 to 2, where three variables from
the integer theory are instantiated. Theactual path constraints as seen inEquation2.1 are
modelled using assert statements in lines 3 to 5. The solver checks whether these state-
ments are satisfiable (line 6) and try to obtain amodel of the previously declared variables
that fulfill the statements (line 7). Theoutput of Z3 [26] against the SMT instance is shown
in Figure 2.4. Line 0 showswhether the instance is satisfiable or not, followed by amodel
that shows a satisfying assignment of all free variables. Themodel produced by the solver
can be any instantiation that fulfills the constraints and does not need to be unique. Fur-
thermore, the values provided are not optimized for either minimality or maximality by
default; however, modern solvers such as Z3 also provide optimization techniques for
model finding. For a more detailed explanation of the format, we refer the interested
reader to the SMT-LIB Standard [9].

0 sat
1 (model
2 (define−fun y () Int
3 0)
4 (define−fun x () Int
5 21)
6 (define−fun z () Int
7 42)
8)

Figure 2.4: The listing shows the result from the satisfiability check in line 0 and amodel
for the SMT instance shown in Figure 2.3 in lines 1 to 8 produced by Z3 [26]. Amodel is an
instantiation of all variables with values so that all constraints or assert statements are
fulfilled.

2.2 Java Virtual Machine

In this section, we briefly introduce the Java bytecode instruction format and give an
overview of Java VirtualMachine (JVM) internals specific to a thread of execution. Lastly,
we describe the Java agent that provides capabilities for load-time instrumentation of
bytecode.

Java bytecode

Java source code compiles to Java bytecode, an architecture-independent instruction set
that is interpreted or executed by the Java Virtual Machine (JVM). To run Java programs,
the developer starts the JVM and specifies what class files in bytecode format should be
executed by the virtualmachine. In contrast, binaries are directly executed on theCPU in
languages such as C.Thus the source code has to be compiled for a specific architecture
like x86, requiring a compiler for each architecture. In contrast, Java bytecode can run on
any architecture with a compatible JVM.The functionality and features required by the

– 11 –

2 Background

JVM are detailed in the JVM specification (summarized in the next subsection). The JVM
generally serves as an abstraction layer between the host architecture and the bytecode,
allowing for one instruction set. Depending on the specific implementation of the JVM,
the bytecode can either be interpreted inside the virtual machine or compiled to native
instructions using a just-in-time (JiT) compiler. As the name suggests, instructions in
the bytecode format use a bytecode structured instruction set developed for the JVM.

/∗∗
∗ Instance method that
∗ performs addition of
∗ two integers .
∗/

0 int add(int x, int y){
1 return x + y;
2 }

(a) Function

int addition(int , int) ;
Code:

0: iload_1
1: iload_2
2: iadd
3: ireturn

LocalVariableTable:
.. Slot Name Signature
.. 0 this LClass;
.. 1 x I
.. 2 y I

(b) Bytecode for the function in (a)

Figure 2.5: (a) Source code of an instance method that performs the addition of two in-
tegers and returns the result. (b)The compiledmethod in byte code. The numbers before
each instruction are byte offsets and can increase by more than one byte per instruction
if additional bytes are used (for example for indices). The two integer values are loaded
from the methods locals (seen in the LocalVariableTable) and put onto the stack using
the iload instruction. The iadd instruction retrieves the two top values from the stack and
puts the result of the addition back onto the stack. The ireturn sets the methods return
value to the stack’s top value.

The instructions are executed on a stackmachinewith additional storage possibilities us-
inga registermachine. Whenan instruction is executed, the requirednumberofoperands,
if any, is popped from the stack, and the resulting value, if any, is pushed back onto the
stack. Values on the stack can also be relocated into the register area to bemade accessi-
ble using an index or reference.

The operation codes (opcodes) are one-byte wide, allowing for a total of 256 instructions,
of which 202 are currently in use. In addition to the opcodes, each instruction may use
zero ormore bytes for indexing or other purposes, such as jumpaddresses. Most instruc-
tions fall into one of seven general categories:

– Load and store instructions can transfer entries between the stack and register. The
value can be transferred between the stack and register for arithmetic values. For
generic objects, only the reference or address is transferred.

– Arithmetic operation and comparison instructions perform the operations on the

– 12 –

2 Background

values on top of the stack. For example, an integer addition is performed using the
iadd instruction. To execute the iadd instruction, the JVMadds the top two stack val-
ues and returns the result to the stack. Some comparison operations, such as com-
paring if a value is zero, are also part of this group because they push the result as an
integer back onto the stack instead of branching directly. Most arithmetic instruc-
tions are typed using a prefix such as i for integer operations (i.e. iadd or isub).

– Arithmetic type conversions are directly supported as instructions. The JVM does
not differentiate between, for example, booleans, shorts, and integers; hence they
are all stored as integers. However, value shortening can be performed using the
corresponding instruction such as i2s that shortens the operand into the value range
of a short. Nevertheless, the resulting value on the stack is again an integer.

– Stackmanagement instructioncanduplicate, removeor rearrangevalueson the stack.
These instructions are type-indifferent but cannot split values that span across mul-
tiple entries.

– Object management instructions handle object creation and interactions, such as
manipulating class variables. While arrays are also objects, they have dedicated in-
structions for creation andmanipulation that are also typed.

– Methodhandling instructions areused formethod invocationand termination. Call-
ing these instructions invokes special handling to remove or add additional stack
frames.

– (Conditional) control flow handling covers all instructions that can diverge the con-
trol flow. That group includes unconditional jumps such as goto alongside condi-
tional jumps based on the top value on the operand stack like ifeq.

A fewother instructions exist that handlemore specialized tasks, such as thread synchro-
nization and exception handling.

Operand stack

0x787f1ade8
100I
90I

Operand stack

0x787f1ade8
190I

iadd (0x60)

Figure 2.6: Java operand stack before and after an iadd instruction. This example visual-
izes the iadd instruction in line 2 from the code block in Figure 2.5b. The iadd instruction
performs addition on the top two (integer) values on the stack and pushes the result back
onto the stack. The first entry on the stack is a reference into the heap where the par-
ent class object is stored. The second and third entries are the actual values. They can be
stored directly in the operand stack because integers are stored in 32-bit two’s comple-
ment, and thewidth of the operand stack is 32-bit. After addition, the stack size remains
unchanged because the operand stack of amethodhas afixed size determined at compile
time.

– 13 –

2 Background

An example of a method that performs the addition of two integers is shown in Fig-
ure 2.5. The method parameters are placed in the locals register on method invocation.
For instance-methods, invoked on an object, the first local slot is reserved for the this-
pointer, a reference to the object itself. In the bytecode shown in Figure 2.5b the two
integers from themethod’s parameters are loaded from the locals using the iload_1 and
iload_2 instructions respectively. As indicated by the prefix, they load an integer from
the locals at positions 1 and 2, and put the value onto the stack. Further information on
the values in the locals is also shown in the LocalVariableTable in Figure 2.5b. The next
instruction (iadd) removes two values from the stack and puts the value resulting from
adding the two values back onto the stack. Both valuesmust be of type int. The type is not
checked during runtime but validated during compilation. For the iadd instruction, the
operand stack before and after the execution is visualized in Figure 2.6. The stack grows
from the bottomup, as indicated by the arrow. Themaximumsize of the operand stack is
fixed and determined during compilation. The bottom entry on the stack is a 32-bit ad-
dress that references the parent class object in the heap area that is not visualized here.
The two integers are pushed onto the stack using the aforementioned iload instructions.
The specific values shown in Figure 2.6 are only for demonstrative purposes and would
depend on the parameters passed to the method on invocation. While both integers are
visualized in decimal format, they are stored as a 32-bit two’s complement binary num-
ber on the stack. The iadd instruction removes the two topmost values from the stack
and performs integer addition. After performing addition, the result is put back onto
the stack. Lastly, the ireturn instruction shown in Figure 2.5 takes the top value from the
stack and puts it onto the stack of the invoking method (not shown here).

Java virtual machine specification

Java uses a virtual machine, the Java virtual machine (JVM), to execute Java bytecode.
Utilizing a virtual machine as an abstraction layer above the host architecture allows for
architecture-independent source code compilation. Hence the same bytecode can be run
on arbitrary architectures as long as a JVM exists for that architecture. The JVM specifi-
cation [40] specifies the behavior required by an implementation of the JVM specifica-
tion. The freedom provided by the specification allows for various JVM implementations
for specific purposes, like performance-optimized implementations or implementations
that focus on bytecode verification by monitoring the runtime and allowing modifica-
tions like the JVM implementation utilized by JavaPathfinder [31]. Each JVM generally
has a shared heap that stores class instances and arrays. Because the heap is not directly
exposed to programmers but managed by the JVM, garbage collection can be handled
directly by the JVM. The JVM also has a shared memory area that stores JVM internals
and the method area. Themethod area stores per-class information, including field and
method references and constants.

– 14 –

2 Background

Thread
Thread

Thread

Program counter

Native stack JVM stack

Stack frame

Stack frame

Stack frame

Stack frame

Local variables array

Return value

Current class
constant pool
reference

Operand stack

Figure 2.7: JVM internals that are specific to each thread of execution. Each thread has
a program counter pointing to the currently executed instruction. The native stack con-
tains method information needed to execute native functions. Depending on the JVM
implementation, the native stack could be identical to the C stack. The JVM stack con-
tains stack frames. A method-specific stack frame is created on method invocation and
deleted on method termination. Each stack frame holds the return value of the corre-
spondingmethod alongside an operand stack and a local variable array for storing prim-
itive values and references. Each stack frame also maps into the heap to access the con-
stant time pool.

The JVM specification allows for concurrency in threads of execution. Depending on the
JVMimplementation, these threads can translate toCPUthreadsbut canalsobe executed
in a single thread. Each thread has private memory to allow concurrency, as shown in
Figure 2.7. The thread-specific area includes the program counter that points to the cur-
rently executed instructionwhen executing Java code or is undefinedwhen native code is
executed. Each thread of execution also has a native stack used to invoke nativemethods.
The actual design of the native stack is implementation dependent but can, for example,
be identical to the C stack. Because the JVM is a stack and register machine, instruc-
tion operands are not directly accessed in memory but by using a stack. A stack frame is
created and put onto the JVM stack tomodel method-specific information uponmethod
invocation. Aftermethod termination, the stack frame is cleared from the stack. Because
the JVM uses a stack machine combined with a register machine, each stack frame con-
tains an operand stack that stores instruction operands. This stack is augmented with a
local variable array for storing operands or references. Because the stack and local’s size
are determined at compile-time, dynamic objects cannot be stored there and are put into
the shared method area. Only a reference to the object is stored in the stack frame.

– 15 –

2 Background

Bytecode Instrumentation

Additional instructions must be added to the target application to perform instrumen-
tation-based dynamic symbolic execution. Instrumentation of bytecode can be done of-
fline before the application is started or online during the runtime of the JVM. To per-
form online instrumentation, the JVM offers functionality to attach a specially crafted
jar-file, called a Java agent, to the JVM that utilizes the instrumentation API exposed by
the JVM to manipulate bytecode during the loading process. When initializing a JVM,
the Java agent can be attached using either a dynamic loading API or statically through a
command line argument. When a class file is loaded into the JVMby the class loaders be-
fore execution, the attached Java agent can intercept the loaded bytecode before storing
it inmemory. The interception allows for altering existing instructions and adding or re-
moving instructions,methods, or even classes. An example that invokes a native process
is shown in Figure 2.8. After compilation, the method call is replaced by the invokevir-
tual instruction that fetches the method using an index from the class’s constant pool.
The parameter is loaded from the method locals through the aload instruction. Using a
transformer inside the Java agent, themethod call can bemanipulated. For example, the
parameters of the method could be duplicated and logged to another method.

JVM

Memory

Agent

Class
loaders

Target
source code

void doPost(String cmd){
...
runtime.exec(cmd)
...

}

Target
byte code

void doPost(String);
...
5: aload_1
6: invokevirtual #13
...
10: return

void doPost(String);
...

5: aload_1
6: dup
7: invokestatic #20

10: invokevirtual #13
...

34: return

Compile
(javac)

Load (1)

Transform (2)

Store (3)

Figure 2.8: JVM and instrumentation agent interaction at load time of target files. The
exemplary method shows the execution of a native process in source code and compiled
byte code. The Java agent is initialized if attached on JVM startup and registers a class
file transformer. When compiled, target applications are loaded (1), and the class-loader
hands the class file definition to the Java agent for byte code transformation (2). During
transformation, the agent can manipulate instructions and alter the class definition. In
this example, the agent added a method call to a static method that receives the same
parameter as the original method. After redefinition, the class is stored in memory (3)
for usage by the target application.

The Java agent receives the instructions of a class as a byte streamwhich can bemanipu-
lated. To instrument the byte stream, we use the ASM [20] framework to perform byte-
code transformations. While other libraries like Apache’s bytecode engineering library
(BCEL) [25] exist, ASM’s architecture is performance oriented, and has a better mem-
ory footprint. Performing transformations on the bytecode level offers several advan-
tages; firstly, it requires no access to source code, making it usable on already compiled

– 16 –

2 Background

or closed source programs. Secondly, using ASM, we can programmatically inspect all
code loaded into the runtime and perform custom transformations to the bytecode to
add the required handling for symbolic execution.

2.3 Java Vulnerabilities

TheOWASP Foundation publishes a yearly report outlining the top ten types of vulnera-
bilities present in web applications [53]. The top three types of vulnerabilities from 2021
include broken access control, cryptographic failures, and injection attacks. This the-
sis focuses on injection vulnerabilities caused by vulnerable Java code. The report out-
lines that 94% of evaluated applications contain some injection vulnerability. The injec-
tion category summarizes 33 Common Weakness Enumerations (CWE’s) [47] including
CWE-79: Cross-site Scripting and CWE-89: SQL Injections. In general, injection at-
tacks describe vulnerabilities where user-controlled values are passed through an ap-
plication to some interpreter without proper validation or sanitization. For injection
attacks, the attack vector usually contains two major parts: the source, where a user-
supplied value is read into the application context, and a sink, where the value is inter-
preted after it has been processed. Typical sources in the web context are, for example,
values extracted fromHTTP requests like cookies, headers, or parameters. Typical sinks
include calls to database systems or command executions, where a command or state-
ment is passed as an argument.

0 @Override
1 public void doPost(HttpServletRequest request , HttpServletResponse

response){
. . .

2 String param = "" ;
3 i f (request .getHeader("BenchmarkTest00008") != null) {

// Source
4 param = request .getHeader("BenchmarkTest00008") ;
5 }

. . .
6 String sql = "INSERT INTO users (username, password) VALUES ('foo ' , ' "

+ param + " ')" ;
. . .

7 Statement statement = DatabaseHelper.getSqlStatement() ;
// Sink

8 int count = statement.executeUpdate(sql) ;
. . .

9 }

Figure 2.9: SQL Injection example from OWASP benchmark test suite [51]. The function
is taken from theBenchmarkTest00008 servlet and is called when a user sends a POST
request. The user-controlled header value is directly passed into an SQL update function
without using prepared statements or sanitization.

– 17 –

2 Background

While the evaluation by the OWASP foundation regards any web-facing applications,
Java-based web services align well with the types of vulnerabilities presented in the re-
port. Figure 2.9 shows an abbreviated example of an SQL-injection present in Java code.
The example is adapted from a benchmarking dataset maintained by OWASP [51]. The
dataset is explained in more detail and used for evaluation in Section 5.2. Line 4, shown
in Figure 2.9, is the source of the vulnerability, where an HTTP header value is read into
the application context. In line 6, the value is processed into an SQL query without any
sanitization. Thequery isdirectly passed into the sink in line8,where thequery ishanded
to a database driver. The code is part of a method that handles POST requests of a web
service. While the sink shown here communicates with an SQL database, it could also be
a variety of other functionalities. The sink does not need to interpret the injected state-
ment directly but can also pass it to external services. For example,when a user can store
client-side scripts like Javascript into a database used to render a web page on a victim’s
machine, it is considered a cross-site scripting attack (XSS) falling in the injection attack
category. The interplay between the target application and external services or client de-
vices makes detecting whether an attack was successful difficult. Especially when only
considering information from within the application context. However, one can detect
whether malicious information can reach a vulnerable sink.

– 18 –

3
Related Work

This section summarizes work related to this thesis; at first, existing symbolic execution
engines for Java are introduced, coveringboth interpretationand instrumentation-based
approaches. Secondly, work that focuses on guiding symbolic execution,more precisely,
the state selection towards a specific target metric, such as maximizing the number of
found vulnerabilities, is explored. Lastly, a slight digression into fuzzing web services,
mainly the REST-based fuzzer RESTler [4], is given.

3.1 Symbolic Execution Engines

The concept of dynamic symbolic execution, introduced at the beginning of Chapter 2, is
a widely used technique for code analysis. It is applicable in a variety of fields from soft-
ware verification [55] to test generation [59], bug finding [32] or vulnerability detection
[49]. After a general overview of symbolic execution engines and techniques for various
languages, this section summarizes existing implementations of symbolic execution en-
gines for Java and highlights concepts and problems arising from different implementa-
tion techniques. These systems can be divided into interpretation-based approaches us-
ing a specifically designed JVM [31, 72],which are introduced first, and instrumentation-
based approaches that utilize the ASM bytecode manipulation framework [20] to add
symbolic handling into the target code.

Symbolic execution of binaries extensively researched. Interpretation-based approaches
[69, 21] usually lift the binary to an intermediate representation such as LLVM [39]. Lift-
ing reduces the number of instructions and removes architecture-specific handling. The
benefit of lifting is more general applicability and ease of implementation at the cost of
performance. Compilation or instrumentation-based approaches [73, 57] add symbolic
handling to the binary and directly execute the target. These approaches are either com-
binedwith an entire system emulator likeQEMU [12] to allow architecture independence
or implemented to run on one specific architecture. Using instrumentation frameworks
like Intel Pin [44], symbolic handling can be added directly into the binary. Alternatively,
the binary can be lifted to an intermediate representation, where the handling is added
and recompiled.

– 19 –

3 Related Work

Actual execution allows for faster runtimes and combines well with dynamic symbolic
execution.

The above approaches work on binaries, but as we target Java-based applications, these
engines are not applicable in our context. This work focuses on bytecode and, due to
the web context where runtime information from uninstrumented code regions and ex-
ternal libraries is vital, on dynamic symbolic execution. The JVM acts as an abstraction
layer between the host architecture and the compiled Java bytecodewhen executing a Java
program. Generally, two approaches for implementing dynamic symbolic execution for
JVM-based languages exist. Firstly, interpretation-based systems [54, 43, 48] use a cus-
tom implementation of the JVMspecification [40] to add additional functionality into the
virtual machine that enables symbolic execution. By employing a custom JVM, themon-
itoring possibilities are extensive as one can observe, pause or alter the virtual machine’s
state at the cost of requiring architecture-specific implementations and being limited to
a specific version of Java. Secondly, instrumentation-based approachesmodify the byte-
codeof the target application to addhandling for symbolic execution into the application.
Thus, they can run on an arbitrary JVMwithout requiringmodification to the virtualma-
chine. However, relyingon instrumentation isnot as extensivebecause the JVM’s internal
components, such as the stack frames, cannot be directly observed andmust bemodeled.
However, instrumentation-based approaches can runonany architecture that has a JVM.
Instrumentation frameworks for Java bytecode [17], like ASM [20], can be utilized to add
symbolic handling to the compiled target.

JavaPathfinder (JPF) [31]was initially developedatNASA1 as a translatorbetween Javapro-
grams and Promela models for model checking. Today JavaPathfinder is an entire suite
of tools at the core of which an implementation of the JVM Specification specifically tai-
lored to monitor the system under test lies. The JPF-JVM is used by several engines to
implement symbolic execution [55, 43, 49, 45]. JPF can still perform model checking but
also entails a suite of other functionalities, such as dynamic symbolic execution using the
Symbolic Pathfinder (SPF) extension [55]. Symbolic Pathfinder builds on the JPF-JVM to
observe the internal state of the runtime and drive the symbolic execution. It replaces
the concrete execution semantics of the JPF-core with symbolic execution logic. A sig-
nificant benefit of SPF is its possibility to analyze interleaved multi-threaded systems
alongside the possibility of backtracking the execution. While the JPF-JVMoffers power-
ful features, its implementation of the JVM specification binds the system to one version
of Java. Additionally, any symbolic execution engine built on top of the JPF-JVM is limited
by the VMs performance.

JDart [43], a dynamic symbolic execution framework for Java, is built on top of Java Path-
Finder [31] anduses its customJVM.It is designedas a robust engine tohandle industrial-
scale applications and complexmathematicalNASA software. The system is split into two
major components; the executor executes the systemunder test by utilizing the informa-
tion and interfaces provided by Java Pathfinder [31]. The system tracks method parame-

1https://software.nasa.gov/software/ARC-17487-1

– 20 –

https://software.nasa.gov/software/ARC-17487-1

3 Related Work

ters symbolically andallows theuser to supply additional boundson the input spaceof the
variables to restrict the state space. Symbolic handling is implemented for various com-
plexdata types, includingbit operations, floating-point arithmetic, andnon-linear arith-
metic. Theexplorer builds a constraint tree fromthe supplied symbolic traces andutilizes
the JConstraints library [33], developed as part of JDart, to interface a variety of solvers,
including CVC4 [11], and Z3 [26]. Some mathematical operations are approximated to
allow for faster SMT constraint solving. However, approximating constraints can lead
to invalid models that the explorer validates using the new concrete values against the
constraint tree before re-executing the system under test. While JDart is a very mature
system, its usage of the custom JVM results in performance losses. However, the system
won the SV-COMP 2022 [13]. SV-Comp is a benchmark for comparing software verifica-
tion tools on which a yearly competition is hosted at TACAS. It is the first symbolic exe-
cuting engine to beat classical model-checking techniques, highlighting the potential of
symbolic execution. While the system’s performance was fast on the benchmarked sys-
tems, these do not include larger systems such asweb services requiring additional com-
ponents and systems to be operational. Besides no support for symbolic string tracking
in the original version, its dependency on the JPF limits the system’s applicability.

Jaint [49], a combinationofdynamic symbolic executionanddynamicmulti-colored taint
analysis for Java, is a framework to automatically detect vulnerabilities in Java programs
given a user-specified definition of vulnerabilities. Using a domain-specific language,
the user can specify different sources, targets, and sanitization methods. The frame-
work utilizes JDart [43] as the dynamic symbolic execution engine; the dependency on
the JPF-JVM limits the framework’s applicability to Java programs that are compiled to
run in the specific JVMused by SymbolicPathfinder [54], and entails the same drawbacks
previously discussed. The authors evaluated their framework on the OWASP benchmark
[51] and achieved a 100% true-positive rate with no false negatives. Mues et al. achieved
vulnerability detection by allowing user-defined sink, source, and sanitization specifica-
tions using an expressive interface description language utilized by the taint engine to
track whether values propagate from a source to a sink. We use a similar approach to
detect source-to-sink behavior (Chapter 5). While the results seem promising, no arti-
facts are publicly available to verify the results. Furthermore, the system entails a thirty-
fold increase in runtime compared to FindSecBugs [56], a static vulnerability scanner,
on the OWASP Benchmark evaluation suite [51]. Due to the underlying symbolic engine
using JPF [31], the performance issues will likely increase for larger industrial-scale ap-
plications. Additionally, by the design of the underlying system, the methods that are
symbolically evaluated are executed inside a symbolic harness. This implies that the web
server and architecture underneath the endpoints are not utilized, but a customdriver is
employed. Hence, external systems such as databases are not running and require cus-
tom symbolic peers that mock the behavior. We aim to mitigate these issues by using
the underlying web server as our harness and providing symbolic execution capabilities
inside the native execution of the target application. Using the web server to drive sym-
bolic execution removes theneed for a symbolic harness andpeers as all components fully
function.

– 21 –

3 Related Work

GDart [48], a recently proposed dynamic symbolic execution framework, is built on top
of theGraalVM [72]. TheGraalVM is a robust and high-performance Java virtualmachine
maintained by Oracle and has a similar feature set to the JPF-VM [31]. GDart already fea-
tures a modular design comparable to Coastal [36] that is split into three major compo-
nents. SPouT, their concolic driver, is implemented using the Java on Truffle or Espresso
framework [50]. The SPouT framework is a Java bytecode interpreter built as a secondary
VM layer on top of the GraalVM.The concolic driver can be seeded with concrete values
to guide the execution towards certain states. During execution, a symbolic execution
trace is recorded in the SMT-Lib format. The symbolic explorationmodule handles sym-
bolic traces, builds a constraint tree, and holds the strategies used for symbolic explo-
ration. This framework is a continuation of the JDart [43] engine and uses its constraint
framework to construct an SMT problem that is solved to obtain new concrete values.
This architecture is a promising design and achieved fourth place at the SV-Comp 2022
[13]. We use the SV-Comp benchmark for evaluation in Section 4.6. However, its de-
pendency on the GraalVM requires a startup of a new JVM instance per explored path.
While this is a constant overhead for smaller projects, restarting the web application per
request could introduce significant performance penalties in the web context. Further-
more, because the framework is a relatively immature system, its symbolic capabilities
are currently limited. String tracing, for example, is not supported in the latest release of
the framework. However, using the GraalVM to drive symbolic execution seems promis-
ing, considering the number of languages the GraalVM supports and the performance it
offers.

JSEfuzz [45] is a vulnerability detection framework that focuses onfinding vulnerabilities
in Javaweb services. The framework combines fuzzing and dynamic symbolic execution.
JSEfuzz is developed using amodular design that usesmultipleworker nodes for fuzzing
and one controller node for driving the dynamic symbolic execution. The application and
its dependencies are split into its coremodules. Fuzzing drivers for eachmodule are de-
rived fromunit tests for the respective functions. However, the driversmust bemanually
written if no tests are present. Each module is independently fuzzed by a worker node
using Kelinci [38], a wrapper for the AFL fuzzer [46] that enables AFL to fuzz Java ap-
plications. If an exception occurs during fuzzing, the responsible method is identified
using the stack trace and marked as vulnerable. A controller node identifies all call-sites
of the vulnerable function using source code level search. Given the call sites, the con-
troller node utilizes Symbolic Pathfinder [55] to obtain path constraints that lead to calls
of vulnerable functions. Using either theCVC4 [11] or Z3 [26] solver frameworks, concrete
inputs are generated to validate the exploitability of the vulnerabilities identified by the
fuzzing procedure. While this framework is already tailored towards automated vulner-
ability detection in web services, it depends on the presence of unit tests for the entire
code base, including dependencies. Furthermore, the vulnerabilities considered by the
authors are limited to exceptions thrown during fuzzing. They argue that these excep-
tions could be used to trigger Denial of Service (DoS) attacks against a web service. How-
ever, other more sophisticated attacks that do not lead to exceptions, such as injection
attacks or de-serialization attacks, cannot be detected using this framework. Further-
more, the dynamic symbolic execution framework is based on Java Pathfinder [31], and

– 22 –

3 Related Work

uses its custom Java virtual machine that introduces a timing overhead and limits the
applicability to smaller web services because of the aforementioned issues. The authors
have not provided artifacts or repositories to verify or improve their design. While their
system features amodular design, it divides the target application into smallermodules.
However, the modularity makes a system-wide test using external fuzzers like RESTler
[4] infeasible.

Considroid [27], a vulnerability detection framework for mobile applications written in
Java, utilizes taint analysis and dynamic symbolic execution to detect SQL injections.
They utilize the Symbolic Pathfinder engine [54] for concolic execution and combine it
with a multi-colored taint analysis. However, they only use the concolic execution to ex-
ecute specific paths found by static analysis. Using the static analysis, they construct a
stack containingwhat branch has to be taken to reach a possibly vulnerable sink. Most of
the previously described systems rely on the JVM supplied by the JavaPathfinder suite
[31] and entail the benefits and limitations of that system. While the recent work by
Mues et al. [48] utilizing the performance-optimized GraalVM [72] is promising, its cur-
rent design requires a restart of the JVM for each test run and symbolic strings are not
yet supported. Hence we explore a second avenue enabling symbolic execution through
instrumentation-based systems, which are summarized below. Instrumentation-based
systems can either work directly on the instruction set or on an intermediate represen-
tation (IR) like Jimple [67]. Performing transformations on intermediate representations
by lifting the bytecode simplifies development due to a more miniature representation.
Simplification comes at the cost of either interpreting the intermediate representation
or recompiling the transformed code into its target instruction set. The current state of
the art does not utilize an IR but works directly on the instruction set described below.

Tanno et al. [64] constructed a tool suite for automated test generation of Java web ap-
plications. Given an input design model constituting information regarding screen ele-
ments such as input fields and their constraints, business logic definitions, and database
table definitions,TesMagenerates a set of test cases for the applicationunder test. TesMa
relies on CATG, a dynamic symbolic execution engine for Java applications developed by
Tanno et al. [64] to generate new inputs and an initial database state. CATG is an open-
source dynamic symbolic execution engine that relies on instrumentation to drive sym-
bolic execution. The system has two possible variants, the online mode, and the offline
mode. Both modes will be introduced briefly; however, as the system developed in this
thesis is based on the CATG engine,more in-depth discussions of themodules and func-
tionalities of the system can be found in Chapter 4. In the online scenario, an overview of
the architecture is given in Figure 3.1. The system relies on the Java agent introduced
in Section 2.2 to perform symbolic execution and can be split into three core compo-
nents. Firstly, instrumentation of the target application is performed using ASM [20],
introducing calls to a custom logger to log each visited instruction and its values. After
transformation, the system under tests runtime can be observed through the function
calls added during instrumentation. In the online scenario, a direct concolic execution
is performed in the second coremodule thatmaintains a shadow stack and heap to build
path constraints as the execution progresses. Lastly, after the symbolic execution fin-

– 23 –

3 Related Work

ishes, the third module selects a new branch to explore, builds the path constraints, and
writes them into a file. The constraint building is implemented using a custom logic and
builds constraints in the CVC4 [11] native input format, binding the system to the CVC4
solver.

Solver

CVC4 [11]

Con-
straints

Inputs

Target

JVM

Java Agent

Instrumented

Coordinator

Target
Symbolic
executor

Instru-
mentation

Loading

Restore

Save

Solve

Model

Write

Read

Transform

Trace

Figure 3.1: Architecture overview for the CATG symbolic engine [64] in online mode.
CATG is an instrumentation-based dynamic symbolic execution engine. All functionality
except for the SMT solver is part of the Java agent. The agent includesmodules for instru-
mentation, the symbolic driver and a coordinator. The instrumentation agent intercepts
loaded classes and adds functionality to observe the executed byte codes. The symbolic
executormodels the shadow state and builds constraints. Constraints are stored in a file,
and the CVC4 [11] solver is called using a command invocation. The constraints are writ-
ten in CVC4’s native input language. New inputs returned from the solver are stored on
file to be read when the JVM is restarted.

CATG also offers an offline mode that decouples the symbolic executor and the coordi-
natormodules from the execution of the target application by saving the trace generated
during execution to a file. The trace file can then be read by another Java program that
holds the symbolic driver and state selector. Effectively the symbolic driver reinterprets
the trace and performs symbolic execution decoupled from the concrete execution. De-
couplingbetween instrumentationandsymbolic executionallows for separationbetween
concrete and symbolic execution. However, the size of the trace that needs to be written
to file can proliferatewithmore extensive programs because each instruction needs to be
logged, limiting the performance. Furthermore, by simply logging each instruction se-
quentially when it occurs, programs that rely onmultiple threads will appear interleaved
in the symbolic execution, making symbolic tracking impossible. Furthermore, despite
the separation,CATGstill needs to execute the target symbolically or fully each timeanew
input should be generated. As further outlined in Chapter 4, we aim tomitigate some of
the above issues by separating the symbolic engine between the symbolic executor and
the coordinator. The system is open source, but has not beenmaintained in recent years.

– 24 –

3 Related Work

IslamandCsallner [35] introducedanother instrumentation-baseddynamic symbolic ex-
ecution engine that utilizes ASM [20] to instrument the target application. Their system
enables symbolic execution for code that relies on interface abstraction. More specifi-
cally, Islam and Csallner show a technique to buildmock classes of interface instances to
enable symbolic execution when the superclass is not available. The system is geared to-
wards test case generation during development and does not align with the focus of this
thesis. Even though their engine is published, it is outdated and has several documented
issues thatwemitigate in our system. Issues include only partial support for symbolic ar-
rays and floating-point arithmetic. The system also does not allow for multi-threading,
and string reasoning is not supported.

An alternative dynamic symbolic execution engine for Java is EvoSuiteDSE [59], which
is based on EvoSuite [28], an automatic test case generation tool for Java classes. While
EvoSuiteDSEworks similarly by supplying an instrumentation agent to the runtime that
adds symbolic handling to the target bytecode, it is more geared towards test generation
in combination with EvoSuite and not a standalone symbolic execution engine.

COASTAL [36] is a more recent instrumentation-based dynamic symbolic execution en-
gine that also relies on ASM [20] to instrument the system under test. Coastal is the
first instrumentation-based system with a loosely coupled design between the symbolic
driver and symbolic explorer. By allowing the symbolic explorer, a Java program, to load
the target application’s class files and instrument them with a loader that utilizes ASM
it achieves the loosely coupled design. After a target is loaded, a trace is generated by
spawning a new thread that performs the target execution independently of the main
component. Hence Coastal does not use the Java agent to attach symbolic handling to
the target application, but it spawns the target application inside a symbolic harness.
While their design shows potential for independent targets, for the use case of this the-
sis it is not applicable. We focus on targets that are larger web service architectures that
rely on libraries to handle the server communication and other components, and start-
ing themmultiple times in parallel for each trace is not possible and startup times would
significantly hinder the performance. In Chapter 4 we aim to combine the modular de-
sign of COASTAL with the symbolic architecture of CATG [64] to achieve independence
between the symbolic executor and explorer in a way that the symbolic executor is driven
by incoming web requests and not directly through the symbolic explorer.

Guided symbolic execution using machine learning

When symbolic execution is used to evaluate large-scale applications, it quickly becomes
unfeasible to explore every possible branch because the number of possible branches is
exponential in the depth of the execution tree, also known as the path explosion prob-
lem [7]. Each time a branching possibility is encountered, two new branches emerge,
leading to exponential growth. Hence,when symbolic execution is used to detect vulner-
abilities or bugs in a program where not all branches can be explored, the system’s per-
formance directly correlates to the choices of the state selection heuristic. If a heuristic

– 25 –

3 Related Work

effectively steers the execution towards vulnerable states, the performance of the system
increases. Crafting a heuristic that effectively steers symbolic execution on Java bytecode
towards injection vulnerabilities is beyond the scope of this work, but is planned as fu-
ture research, and some existing work is summarized below. While well-craftedmanual
heuristics have shown success in improving the performance of symbolic execution en-
gines, they fail to encapsulate the global goal (i.e. maximizing coverage) and only repre-
sent certain flavors. These flavors can lead to an exploration engine getting stuck in parts
of the code favored by the current heuristic. Using a heuristic approximated by a regres-
sion network can lead to a more nuanced decision that encapsulates a larger picture.

Learch [32], an extension to the KLEE engine [21], considers using the heuristics crafted
for coverage-optimized search as features for a neural network. These heuristics enable
a regressionmodel to approximate the reward of a given state. Because Learch utilizes a
feed-forward neural network, the training requires a labeled dataset containing the fea-
tures representing a state and its actual reward (coverage per time). The reward cannot
be calculated online when selecting a state because its successors and coverage are un-
known. Given a list of actual tests and their reached states, the authors utilize test trees,
a novel approach for efficiently calculating the rewards of a given test. However, test trees
are order-dependent because a test case inserted into the tree is only assigned coverage
for states that previous test cases havenot covered. For training themodel, they utilize an
iterative approach, where for the first iteration KLEE is running with manual heuristics
for test case generation. After the first model is trained, it is used as the heuristic for ex-
ecuting the same target programs symbolically again. The training is done iteratively for
several rounds. During inference, instead of using themodel obtained in the last training
iteration, all learnedmodels are used as a combined heuristic for selecting the next state.
While the authors evaluated the model’s performance regarding both achieved coverage
and reachedUBSansecurity violations [42], themodel is only trained formaximizing cov-
erage. Still, one can observe an increase in both achieved coverage and found vulnerabil-
ities, but the increase in discovered vulnerabilities likely correlateswith higher coverage.

SyML [60] also tries to mitigate the path explosion problem by prioritizing paths based
on an approximated reward using a machine learning algorithm. In contrast to Learch
[32], SyML’s target function directly considers vulnerabilities instead of coverage. They
utilize both the execution history and a forward-moving window for feature extraction.
Themodel is trained on crashing inputs to learn underlying patterns in vulnerable paths.
While their approach is promising, the foundvulnerabilities are exclusively low-level, like
overflows, out-of-bounds accesses, or dereferences.

Another approach uses guided symbolic execution in combination with the Q-learning
algorithm [70] to guide the symbolic execution towards a predefined state in the target
program[71]. Theapproach is instantiated inKLEEandshowspromising results for com-
bining reinforcement learning and symbolic execution.

– 26 –

3 Related Work

3.2 Web Service Fuzzing

When exploring the state space of a program, an orthogonal approach to symbolic exe-
cution is fuzzing. In its basic form, fuzzing controls the inputs to the system under test
to explore the application with little to no knowledge of the internal architecture of the
target. Fuzzing utilizes mutators to vary the program inputs in various ways to reach
unintended and new code regions. Because fuzzing does not alter the binary, it allows
for a much higher execution speed than symbolic engines. Without additional knowl-
edge, fuzzing mutates the inputs randomly. Often context-unspecific mutations lead to
a quick drop off in newfound branches asmore difficult path constraints cannot be over-
come.

Fuzzers primarily benefit from fast execution times, being able to test many inputs in
a short period. These characteristics also allow for a good combination of instrumen-
tation, taint tracking, or dynamic symbolic execution. By combining symbolic execu-
tion and fuzzing in a hybrid approach, one can benefit from the fast exploration speed of
the fuzzer and augment the mutators with inputs obtained through symbolic execution
when the fuzzer’s performance stagnates. Integrating the fuzzer described below into
the symbolic execution engine developed as part of this thesis is ongoing work at the In-
stitute for IT-Security by Florian Sieck.

RESTler [4] is a black box REST API fuzzer that is grammar-based and uses the OpenAPI
specification [65] for grammar generation. The OpenAPI Specification defines a formal
interface description for HTTP APIs. It allows programmatic discovery of the endpoints
exposed by the service without access to other documentation or source code. Atlidakis
et al. developed a parser that automatically generates a grammar fromanOpenAPI spec-
ification [4]. The grammar effectively provides the structure required for the test harness
to fuzz a web service in a fully programmatic manner. As mentioned, fuzzers often only
reach a shallow depth because no information about the target program is used. Pythia
[3] is an extension of RESTler that instruments the target program to obtain coverage in-
formation for guiding the fuzzer, achieving higher coverage rates than native RESTler.
Pythia highlights the potential of a hybrid system that steers the fuzzer.

– 27 –

4
Symbolic Web Application Testing

Automatically and systematically identifying vulnerabilities in web services plays a cru-
cial role in securing today’s online world. Static application security testing (SAST) and
dynamic application security testing (DAST)methodologies are commonly used to detect
security vulnerabilities thatmake an application susceptible to attacks. SAST techniques
statically analyze an application’s source code to find issues and are often less expensive
to run compared to DAST scanners. However, runtime issues and problems arising from
calls to external libraries are typically not detectable due to their dynamic nature. DAST
tools,on theotherhand, relyon testing theapplicationdynamicallywithoutknowledgeof
the internal structure of the application. DAST techniques rely ondrivers that test the ap-
plication from the outside and can only react to observable changes, such as responses or
timing behavior. Dynamic testing allows tools to evaluate the dependencies between dif-
ferent components at runtime. However, being a black box scenario, the depth at which
DAST tools can evaluate a target is limited, comparable to pure fuzzing. Interactive Ap-
plication Security Testing (IAST) techniques aim to mitigate the shortcomings of both
SAST and DAST approaches. By dynamically integrating an agent into the application,
that can guide a dynamic external testing component with the knowledge gained by an-
alyzing the internal structure of the system under test.

Using symbolic execution as an IAST technique to find web vulnerabilities in Java-based
web services has recently been shown to be effective by Mues et al. [49]. However, their
system comes with several significant limitations. Firstly, it builds upon a custom driver
for the methods considered entry points to enable symbolic execution through the JPF-
JVM [31]. Such a harness is typical for symbolic execution and often needed when sym-
bolic execution does not start with the main method. However, in the case of web ser-
vices, typically, the exposed endpoint could already be seen as a driver that can control
the entry points of an application. For the case of Jaint, by building a harness that has
control over a specific method inside the applications, the agent and testing component
become interleaved because the application can no longer be tested through its exposed
endpoints. By decoupling symbolic execution between the symbolic executor and sym-
bolic explorer, we aim to develop a system that enables symbolic exploration steering
through HTTP endpoints in natively running web services that require no mocking of
system components or external libraries.

– 28 –

4 Symbolic Web Application Testing

Recent works have demonstrated the potential of loosely coupled dynamic symbolic exe-
cution engines [36, 48].

Tomitigate theabove-mentioned issuesandenable aneffective combinationofAPI-based
fuzzing and symbolic execution as an IAST tool for Java-based web services, we devel-
oped a symbolic web application testing platform (SWAT) during this thesis. SWAT is based
on the instrumentation-based dynamic symbolic execution engine CATG [64]. SWAT,
and its differences from CATG, are introduced in this chapter, beginning with an archi-
tectural overview of the system’s current state in Section 4.1. The instrumentation that
enables symbolic execution is described in Section 4.2, followed by a detailed analysis of
the symbolic backend that symbolically tracks instructions and generates constraints in
Section 4.3. The harness to automatically initialize symbolic recording is described in
Section 4.4. We describe our new symbolic explorer in Section 4.5. In Section 4.6, the
effectiveness and efficiency of the symbolic engine is evaluated using SV-Comp, a stan-
dardized benchmark suite developed for automatic, comparable, and reproducible eval-
uation of software verification tools [15]. We evaluate SWAT’s effectiveness in detecting
vulnerabilities in Chapter 5 and provide comparisons to other vulnerability scanners.

4.1 Architecture

This sectionprovides a general overviewof the architecture and functionalities of the sys-
tem. More detailed discussions of the different modules are given in the corresponding
sections below. Common frameworks that enable Java applications to act as web services
listening to multiple endpoints require a relatively long start-up sequence during which
all components are initialized. External services such as databases are also attached. Af-
ter the service is successfully started, new incoming requests do not start a new JVM in-
stance but are usually just threads inside the application that execute the code serving
the requested endpoint. Hence, a symbolic engine that does not require a restart of the
application for each test that is executed would be favorable. A restart between itera-
tions would entail a large overhead and, in turn, significantly worsens the performance.
Loosely coupled engines such as GDart [48] already prevent repeated restarts. However,
their design has an active harness that executes the method under test from inside the
application. Such a harness does not use the underlying code that actually executed the
method but instead uses a custom driver. SWAT is designed to allow the service to run
in its normal configuration, and the symbolic executor is activated when a new request
is incoming. The symbolic excecutor symbolically tracks the application code under test,
and when the response is sent, the symbolic constraints that were recorded are sent to
the symbolic explorer.

To achieve symbolic execution for continuously runningweb services in their native con-
figuration, the architecture of CATG, as shown in Figure 3.1, was reworked into a loosely
coupled design, where the symbolic explorer is separated from the symbolic executor.
For CATG, because both of these components are part of the Java agent attached to the
systemunder test, new inputs are obtained directly after symbolic execution. In a loosely

– 29 –

4 Symbolic Web Application Testing

coupled scenario, depending on the strategy, the symbolic explorer can observe multiple
symbolic execution runs that could, for example, be guided by a fuzzer before analyzing
the execution tree and trying to determine new inputs.

An architectural overview of the different components of SWAT and their interaction is
shown in Figure 4.1. Modules visualized with a grey background are not part of this the-
sis but are still shown to give a complete overview of the system in usage. Modules repre-
sented as a stack canbe replicated to increase the system’s performance. The symbolic ex-
ecutor is attached to the target using a Java agent in the samewayCATGwas added to the
target. However, the symbolic executor (Section 4.3) is only responsible for instrument-
ing the target application (Section 4.2) and modeling the symbolic execution to build an
execution trace augmented with the corresponding path constraints. The complete de-
coupling of the symbolic executor from any symbolic exploration strategy enables mul-
tiple instances of the symbolic executor running in parallel. Furthermore, we enabled
the executor to run in multiple threads on the same instance as long as the threads do
not interact with each other. Multi-threading is especially useful in the web scenario, as
many frameworks allow concurrent execution of multiple different requests in different
threads. The entry and exit point of the symbolic tracking can either be user specified
through configuration files or several adapters for popular frameworks are available that
allow for automatic detection of all endpoints (Section 4.4). The coverage engine works
similarly to the symbolic executor without the symbolic tracking capabilities. The same
execution trace is built, just omitting the symbolic annotations. Using the same trace
format and identical identifier enables the combination of both symbolic and coverage
traces in the same tree while making the coverage engine significantly faster, as it does
not need to maintain symbolic capabilities. After a (symbolic) execution trace has been
completely tracked, the information is sent to the symbolic explorer using HTTP.

The symbolic explorer exposes endpoints for both symbolic and coverage traces. After a
trace is received, it is added to the execution tree. Dependingon the selected scenario, the
symbolic explorer can either drive the symbolic exploration itself or expose another end-
point to allowother components to drive the symbolic exploration. To obtain new inputs,
the tree is analyzed using a search strategy to find nodes with unexplored branches. The
constraints leading to that node are retrieved and sent to a solver to generate new inputs
that satisfy the SMT instance. Solver communication is done through the APIs provided
by different solvers such as Z3 [26], because the constraints are already received in the
SMT-Lib format [9] by the symbolic explorer. The solution can either be relayed back to
an external service, such as a fuzzer, responsible for testing the target or can be directly
used as input on the target.

– 30 –

4 Symbolic Web Application Testing

Symbolic Explorer

Proxy

Constraint
handler

Strategy

Execution tree

Solver
Solver

Solver

Z3 [26]
...

CVC4 [11]

JVM
JVM

JVM

Coverage
engine

Target

JVM
JVM

JVM

Symbolic
executor

Target

Fuzzer

Connector

RESTler [4]
Request

Response

Request

Response

(2) Response

Visited branches

(3) Visited branches
(4) Constraints
(1) Request

(5) Constraints

(6) Solution

New inputs

Figure 4.1: Architectural overview of SWATmodules and target interaction. Modules vi-
sualized in grey are being developed outside the scope of this thesis. The symbolic ex-
ecutor and coverage engine are attached to a JVM instance using a Java agent when the
system under test (target) is initialized. The symbolic explorer is a stand-alone web ser-
vice that can interact with other components using APIs. The symbolic explorer can send
requests to the target application using the target’s native endpoints. The symbolic ex-
ecutor records constraints and sends them back to the explorer, where an execution tree
is built, and a strategy selects constraints that are sent to a solver to find new inputs.
Modules that are visualized as stacks can be replicated to increase performance. Gray
modules are developed outside the scope of this thesis.

All SMT solvers that allow instances in the SMT-Lib format can be used, but currently, Z3
is of primary interest because it recently integrated the string theory into the solver. This
theory enables native solving of instances that contain constraints over strings without
modeling strings as, for example, sequencesofASCII-encoded integers. Integrationwith
RESTler [4] as an external testing component to test the target is outside this thesis’s
scope but is being developed at the Institute for IT-Security by Florian Sieck.

4.2 Instrumentation

Symbolic execution capabilities for Java-based applications exist in two primary flavors.
Interpretation-based approaches, as introduced inChapter 3, rely on an implementation
of the JVM specification that provides capabilities to observe the JVM internals during
the execution. While using a custom JVM is a powerful approach, it has a few funda-
mental drawbacks. Firstly, implementing a JVM is an expensive task; thus, all existing
approaches rely on either the Java Pathfinder JVM [31] or the GraalVM [72] to provide
the required capabilities. Secondly, whenever a new version of Java is released, the JVM
must be adapted to support the new version. On the other hand, instrumentation-based
approaches only need to be adapted when the instruction set changes. CATG [64], in-
troduced in Chapter 3, is an instrumentation-based dynamic symbolic execution engine
based on dynamic bytecode instrumentation that operates directly on the instruction set

– 31 –

4 Symbolic Web Application Testing

specified by the JVM specification [40]. CATG [64] relies on the Java agent functionality
and the ASM framework [20] (Section 2.2) to transform the bytecode of the system un-
der test. The symbolic executor needs to observe each instruction to track what happens
during code execution. For each instruction, CATG adds a call to a static support library
during instrumentation that symbolically tracks the instruction. The parameters of the
call also contain a method id (MID), instruction id (IID) and additional information that
the instruction requires, such as indices. Figure 4.2 shows the instrumented version of
the method shown in Figure 2.5. The highlighted instructions are the original instruc-
tions of the method. To symbolically track the iload_1 instruction at offset 8, offsets 0
and2push the IIDandMIDonto the stack. The instructionatoffset 4puts the indexof the
value onto the stack, and the instruction at offset 5 calls the corresponding staticmethod,
from the support library,with the required values. Additionally, the concrete value is du-
plicated at offset 9 and sent to the symbolic state at offset 10. The concrete value is used
in the symbolic backend to validate if the symbolic value aligns with the concrete value.

int addition(int , int) ;
Code:

0: ldc 10247
2: ldc 10
4: iconst_1
5: invokestatic de/.. ./DJVM.ILOAD (III)V
8: iload_1
9: dup

10: invokestatic de/.. ./DJVM.GETVALUE_int (I)V
13: ldc 10248
15: ldc 10
17: iconst_2
18: invokestatic de/.. ./DJVM.ILOAD (III)V
21: iload_2
22: dup
23: invokestatic de/.. ./DJVM.GETVALUE_int (I)V
26: ldc 10249
28: ldc 10
30: invokestatic de/.. ./DJVM.IADD (II)V
33: iadd
34: ldc 10250
36: ldc 10
38: invokestatic de/.. ./DJVM.IRETURN (II)V
41: ireturn

Figure 4.2: Java byte code of the method shown in Figure 2.5b after instrumentation by
CATG.The lines highlighted in blue are the original instructions. For each instruction, a
single static method call into the support library is added.

We can mostly reuse the instrumentation provided by CATG except for a few adaptions
described below.

– 32 –

4 Symbolic Web Application Testing

Static initializer (<clinit>) are methods that the JVM automatically invokes to initial-
ize arbitrary class objects. Static initializers are invoked when a class is referenced for
the first time and can contain arbitrary code. For example, when a static value from a
different class is used somewhere, and the class the value belongs to has not been used
previously, its static initializer is invoked to initialize the class. However, if the same
method or value is used again, the class has already been loaded, and the initializer is
not called again. For CATG, static initializers do not present a problem because between
each symbolic execution, the JVM is terminated and restarted. Hence the same fields or
methods may invoke the initializer again. However, as previously highlighted, SWAT al-
lows the JVM to remain online between different runs. When SWAT executes the same
piece of code a second time, the static initializers is not called again. If that initializer
is also instrumented, it appears in the symbolic trace only once, leading to two different
traces. One trace contains the possible branching behavior inside the static initializer,
while the second trace does not. Without proper handling, it would lead to inconsisten-
cies inside the execution tree. To avoid this, handling is added to static initializers that
add a special node to the execution trace (Section 4.5). Using these nodes, static initial-
izers can be modeled as branching points in the program that are not under the users’
control.

Invokedynamic is a new instruction added to the JVM instruction set as an effort to sup-
port dynamically typed languages2. Despite Java being statically typed, invokedynamic
finds several applicationsandenables lambdaexpressions. CATG[64] isnot activelymain-
tained, and hence instrumentation and symbolic handling for invokedynamic is miss-
ing. Before the addition of invokedynamic, method invocation was handled by one of
four invocation types. For static methods, invokestatic is used, invokeinterface for in-
terface methods, invokevirtual to call instance methods, and invocespecial for private
methods or constructors. While these instructions differ in how the call site is retrieved,
this difference is transparent to the symbolic execution engine and does not need to be
explicitly modeled. During instrumentation, when a call to one of these four invocations
is observed, the methods owner, name, description, and whether it is an interface are
passed to the symbolic execution by CATG.However,when invokedynamic is used to call
a method, in contrast to all other invocation instructions, its call site is unknown, also
called unlaced, before executing the instruction. To allow for unknown call sites during
the runtime, without relying on the reflections, each invokedynamic instruction refer-
ences a bootstrapmethod (BSM) in the classes constant pool. Bootstrapmethods are re-
sponsible for determining and lacing the call site for the actual invocation. The handling
of bootstrapped methods is not always transparent to the symbolic execution and needs
to be modeled accordingly as described in Section 4.3. To support the symbolic tracking
of invokedynamic instructions, the handling for the existing invocations can be reused.
However, the handling must be slightly adapted during instrumentation.

2https://jcp.org/en/jsr/detail?id=292

– 33 –

https://jcp.org/en/jsr/detail?id=292

4 Symbolic Web Application Testing

Instead of the method’s owner, the bootstrap owner, alongside the method’s name and
description, is passed to the symbolic backend. Additionally, the bootstrap arguments
are also observed and transferred.

int addition(int , int) ;
Code:
0: iconst_1
1: invokestatic de/.. ./DJVM.ILOAD (I)V
4: iload_1
5: dup
6: iconst_0
7: invokestatic de/.. ./DJVM.GETVALUE_int (II)V

10: iconst_2
11: invokestatic de/.. ./DJVM.ILOAD (I)V
14: iload_2
15: dup
16: iconst_0
17: invokestatic de/.. ./DJVM.GETVALUE_int (II)V
20: invokestatic de/.. ./DJVM.IADD ()V
23: iadd
24: ldc 10243
26: invokestatic de/.. ./DJVM.IRETURN (I)V
29: ireturn

Figure 4.3: Java byte code of the method shown in Figure 2.5b after instrumentation by
SWAT. The instrumentation is based on the instrumentation by CATG as shown in Fig-
ure 4.2 butminimized to reduce the footprint. The lines highlighted in blue are the origi-
nal instructions. For each instruction, a single static method call into the support library
is added.

Optimizations to the instrumentation can lead to performance increases. We can de-
crease thenumber of instructions added for each target instruction by removing theMID
fromall instructions. The IID is already a unique id that can be used to identify the corre-
sponding instruction. Furthermore, instructions that donot appear in the symbolic trace
(Section 4.5) do not need an IID.The IID is only used as the correlating factor to combine
multiple traces into a single execution tree. So only instructions that can alter the con-
trol flow, either through branching behavior, exceptions, or class loading, need an IID.
While most of the runtime overhead is caused by the support library that performs the
symbolic handling, the performance is also increased by reducing the number of added
instructions. Especially if the number of instrumented classes is not limited to themeth-
ods that are symbolically tracked. The symbolic handling does not introduce overhead if
classes are instrumented but not symbolically tracked. Hence only the execution of the
instrumented instructions contributes to the overhead. By omitting the MIDs and only
adding IIDs for instructions that can in someway alter the control flow of an application,

– 34 –

4 Symbolic Web Application Testing

the size of the instrumented class can be reduced (Figure 4.3). Figure 4.4 shows an eval-
uation of the size reduction SWAT achieves compared to CATG. The bars visualize the
relative increase in the number of instructions compared to the original class. A total of
4108 classes over three different datasets were analyzed for a representative result. The
datasets used for the evaluation include the OWASP benchmark [51], OWASP WebGoat
[52], and SV-Comp [15]. The OWASP benchmark [51] contains small samples of HTTP
controller classes thatmay contain a vulnerability. TheOWASPWebGoat [52] application
is a fully-fledged web service that also contains several vulnerabilities SV-Comp [15] con-
tains many classes used to evaluate verification tools. On average, SWAT decreases the
overhead by 20% from 9.19× to 7.65×.

CATG SWAT
5

6

7

8

9

10

11

In
cr
ea
se
in
nu
m
be
ro
fi
ns
tr
uc
tio
ns

OWASP Benchmark
OWASPWebGoat
SV-Comp 2021

Figure 4.4: Relative increase of the number of instructions through instrumentation us-
ingCATG and SWAT against the original byte code. Thedatasets used for evaluation con-
tain a total of 4108 classes. Each factor represents the median over the classes from the
respective dataset. The shown error represents the distance between themedian and the
tenth and ninetieth quantile.

4.3 Symbolic Executor

To achieve a loosely coupled architecture, the symbolic executor, which is attached to
the target, was significantly reworked. This section discusses changes made to the sym-
bolic backend of CATG and features added to SWAT’s symbolic executor to both decou-
ple symbolic exploration and execution and increase the symbolic capabilities. To begin
with, we introduce the new symbolic backend utilizing JavaSMT [6] for constraint han-
dling. Symbolic peers for Java’s built-in methods, including string handling, are intro-
duced next. Following, the symbolic overflow modeling added in SWAT for all numeri-
cal values is specified. Next, we discuss differences in the integral division between the
JVM and solvers. We introduce a model for correctly tracking the division utilized by
the JVM. SWAT can also build symbolic constraints that validate if the target application

– 35 –

4 Symbolic Web Application Testing

handles exceptions correctly. Lastly, changes in the shadow state are highlighted, which
are required to correctly model language features of the JVM that allows SWAT to op-
erate on modern Java versions and enable symbolic evaluation of web services that use
multi-threading.

Symbolic Instruction Tracking

Instrumentation-based symbolic execution engines typically have symbolic handling for
each instruction to maintain a shadow version of the runtime information. To correctly
model the runtime information,maintaining a shadowmemory is often required for lan-
guages likeC.Because the JVMinstructionsoperateona stackand registermachine, they
do not directly modify the memory. Hence, the symbolic executor maintains shadow
copies of the stack frames (see Figure 2.7). CATG [64] offers implementations for the
shadow stack frames and has handling implemented for each instruction, including cor-
rectly updating the shadow state and maintaining symbolic constraints on supported
data types. The initial design implemented in the CATG concolic engine communicates
with the CVC4 [11] solver via a custom implementation that correctly formats constraints
and utilizes a file for transferring the constraints. The symbolic backend is limited to
CVC4, because constraints are formatted in CVC4’s native input language3 and not in the
SMT-LIB standard format [9]. However, CVC4 is outdated and exceeded by CVC5 [8]. The
solver dependency also limits the number of symbolically supported instructions pro-
vided by CATG. The concolic engine does not utilize newer features of the CVC4 solver,
i.e., floating-point andstring theories [10] and thushasnosupport for symbolically track-
ing either double or floating point values. The shadow stack is correctly modeled even
with these values, but no symbolic information is propagated. For integers, only basic
operations are supported symbolically (multiplication, addition, subtraction). All other
integral data types, except booleans, are symbolically supported but modeled as integers
without any constraints regarding the size of the actual datatype. Furthermore, over-
flows are not symbolically modeled for any numerical data types. The system has limited
support for both string and array modeling. However, the solver does not natively sup-
port a string theory. Strings are symbolically tracked in the concolic engine by modeling
a string of length n as n individual integers, each representing one ASCII-encoded char-
acter. The modeling requires solving for the length of a string first without binding the
characters and limits the number of supported features. Arrays also have a custommodel
to support some operations on arrays that do not utilize a formal array theory.

To mitigate these issues and gain a solver-independent implementation, we utilize
JavaSMT [6]. JavaSMT provides a Java-based standard API layer to build constraints us-
ing theSMT-lib format [9] andaccess several solvers interchangeably, includingCVC5 [8],
and Z3 [26]. The JavaSMT library introduces very little overhead compared to the native
solver APIs while offering easy utilization of different solvers. Constraints are not stored
in thememory of the JVMunder test; only a reference to a constraint inside the context of
the specific solver is stored. Utilizing JavaSMT requires new handling for all instructions
that support symbolic handling.

– 36 –

4 Symbolic Web Application Testing

The custom constraint logic initially implemented is substituted by the JavaSMT library
that handles the concrete instantiation of constraints, as well as new value logic for each
type on the shadow stack.

Table 4.5: Overview of symbolic tracking capabilities of Java’s primitive data types by
CATG [64] and SWAT.

Double Float Long Integer Short Character Byte Boolean

CATG No No Yes1,2 Yes1,3 Yes1,2 Yes1,2 Yes1,2 Yes
SWAT Yes Yes Yes Yes Yes Yes Yes Yes
1 Integers are modeled without size constraints leading to erroneous behavior
if an integral value over- or under-flows.

2 All other integral data types besides integers are modeled as integers leading
to erroneous behavior if a value is casted into a range that the value exceeds.

3 Only basic operations are supported symbolically (addition, subtraction, and
multiplication).

The new symbolic backend allows SWAT to symbolically track and reason about all prim-
itive data types, even supporting dynamic casting between data types. A comparison be-
tween the supported data types inCATGandSWAT is given in Table 4.5. Casting between
data types, which CATG does not support, is essential because the JVM does not have
primitive types for byte, short, character, and boolean. These data types are stored and
operated on as integers and only bound explicitly to their datatype when required using
the respective instruction (for example s2i for the conversion between short and integer).
SWAT can symbolically model instructions that cast values between different ranges.

Table 4.6: Overview of the number of symbolically supported JVM instructions for both
CATG [64] and SWAT.

Symbolic
tracking

Partial sym.
tracking

Erroneous sym.
tracking

Concrete
tracking No tracking

CATG 119 2 10 60 11
SWAT 172 4 4 11 11

Overall, as shown in Table 4.6, SWAT can fully support symbolic tracking on 172 instruc-
tions, compared to 119 for CATG, while reducing the number of only concretely tracked
instructions from 60 to 11. SWAT also reduces the number of instructions that have (par-
tially) incorrect symbolic handling to 4 instead of 10. To ensure the correctness of the
symbolicmodel, all instructions that can eithermodify anumerical value or branchbased
on a numerical value are automatically tested for the correctness of the symbolic behav-
ior. The 69 instructions that have the above behavior are tested against a total of 8382
test cases that validate behavior in normal ranges, corner cases, and overflow behavior.
Instructions that manipulate the stack or other areas of the shadow state are currently

– 37 –

4 Symbolic Web Application Testing

not explicitly tested. However, errors leading to misaligned stacks are more verbose and
often trigger exceptions that are placed to assert the shadow state’s correctness.

Java built-in library support

To rigorously test web services, symbolically tracking strings is vital. However, the JVM
does not represent strings as a primitive datatype with native instructions. Instead, Java
ships with a package (java/lang/String) that adds string handling to Java. We have two
possibilities for symbolically tracking strings. Thepackage and all dependencies could be
instrumented to rely on the existing symbolic handling to track string values. However,
instrumenting the packageswould entail a significant runtime overhead and is currently
not possible because Java’s native methods, including String methods, are also used by
the symbolic execution engine. To allow for the instrumentation of Java’s built-in classes,
the packages would need to be loaded twice under different packages, once for symbolic
tracking and once for usage by the symbolic executor. Instead, in alignment with other
engines, we add symbolic peers for the methods provided by Java’s string class. While
this approach requires manual handling for all exposedmethods, it does not require the
instrumentation of Java’s base packages, significantly increasing performance. Another
important set of classes that we provide symbolic peers for is the reference classes of all
primitive types. Depending on the signature of a method, the compiler automatically
performs boxing or unboxing. Symbolic information would be lost without a symbolic
model for the boxed versions. In addition, the reference classes also exposemethods that
require symbolic models.

CATGalso offers symbolic peers for the string, integer, and long classeswith 21 supported
methods. In contrast, SWAT offers support for all reference classes that wrap a primitive
data type alongside support for string classes with a total of 44 supported methods. All
string methods utilize the formal string theory described in the SMT-Lib standard [9]
provided by JavaSMT [6]. The symbolic peers were developed in cooperation with Florian
Sieck, Institute for IT-Security. In addition, SWAT also offers essential support for lists
and enumerations. For all of these classes, themost commonmethods are implemented
first, and while many are still missing, the implementation of the remaining methods
primarily presents an engineering overhead. To ease the usage of the symbolic engine,
weprovide functionality thatdetectswhenamethod isnot instrumentedandhasnosym-
bolic peer during execution. If that happens, the execution continues with the concrete
return value and log the missing method. The log allows users to see what methods are
currently missing and aid the decision of whether the method should be implemented
and the evaluation rerun.

Overflow modelling

When operating on data types with fixed sizes, operations or instructions that increase
or decrease the size of the value can cause the value to grow beyond the size of the data
type. The over- or underflow behavior is defined by the JVM specification and bound by
the binary representation of the corresponding datatype. Java’s integral data types are

– 38 –

4 Symbolic Web Application Testing

represented as signed binary numbers in two’s complement format. The format enables
representing negative numbers in binary format by utilizing the most significant bit of
the binary number as a sign indicator. When operating on integral data types, the JVM
performsbitwise operations, ignoring the sign and truncating values larger than thedata
type. These operations lead to overflow behavior where after the largest positive number
the smallest negative number continues (12710 + 110 = −12810 / 011111112 + 000000012 =
100000002). BecauseweutilizeSMT-LIB’s integer theory,modelingoverflowsby employ-
ing bitwise operations would require a transformation of the formulas at each step. We
model the behavior inside the integer theory to prevent transformations after each in-
struction. Given a potentially out-of-bounds value x ∈ [a, b], we canmodel the overflow
as a function of x:

o(x) = ((x − a) mod (b− a)) + a

By default, we initialize the bounds a and b to the respective data type’s smallest and
largest possible value. The function o(x) is used for instructions that can cause an over-
flowwithinan integer, suchasadditionormultiplication,and isusedwhencastingvalues
to a set with smaller bounds. Correctly handling castings is especially important because
all additions of integral values are handled as integer additions within the JVM and are
casted back to their original datatype after the operation. Certain bitwise operations on
integers, such as shifts or bitwise (X)OR, require a transformation to bit-vectors before
applying the transformation. Hence these operations do not require overflowmodeling.

Truncated division

The definitions used for the division and remainder operations in computer science can
differ. Primarily the handling of negative divisors or dividends differs between defini-
tions [19]. Given a dividend D ∈ ℤ and a divisor d ∈ ℤ with d ≠ 0, the JVM specifies
division behaviour for integers following a division dominant definition based on trun-
cation (T-Definition) [19]:

D div d = trunc(D/d)
D mod d = D− d ⋅ (D div d)

The function trunc(x) rounds all values of x towards zero so i.e. trunc(3.9) = 3 and
trunc(−1.3) = −1. However, the integer division utilized in Z3 [26] uses a division dom-
inant definition based on flooring (F-definition) [19]:

D div d = ⌊(D/d)⌋
D mod d = D− d ⋅ (D div d)

Thedifference indefinitions leads to incorrect behaviorwhenusingZ3’s division function
for modeling the xDIV and xREM instruction. To ensure correctness in all cases, the

– 39 –

4 Symbolic Web Application Testing

following function is used to obtain truncated division by using floor-based division:

truncdiv (D, d) =
⎧{{{{⎨{{{{⎩

D
d , if (D ≥ 0) ∨ ((D mod d) = 0)
D
d + 1, else if d ≥ 0

D
d − 1, else

Given the function for truncated division, the truncatedmodulus is obtained by utilizing
the following function:

truncmod(D, d) = D− (truncdiv(D, d) ⋅ d)
Exception modelling

The JVM allows instructions to throw pre-specified exceptions when certain conditions
are not met that the compiler does not check. For symbolic execution, these exceptions
are of interest for two reasons; firstly, modeling inputs, that cause the system under
test to throw an unhandled exception and cause a crash, enables more thorough test-
ing and eases bug finding. Secondly, exception catching allows the execution of special
code to handle the caught exception. Essentially, exception catching can be interpreted
as an additional branching condition that can be handled if the cause of the exception
has a symbolic model. By providing symbolic models for exceptions, we effectively in-
crease the range of code that can be systematically explored. We model a subset of run-
time exceptions that check if an arithmetic value satisfies some bounds. In total, 47 in-
structions throw an exception, of which we can model 23 symbolically. These include
16ArrayIndexOutOfBoundsExceptions, threeNegativeArraySizeExceptions and four
ArithmeticExceptions. Other exceptions, such as NullPointerExceptions, cannot be
symbolically tracked because we have no model to validate whether a reference is valid
andwouldnot be able tofindnewvalues such that a class instance replaces thenull value.

For example, when an instruction that loads a value from an array, such as IALOAD or
AALOAD is executed, an additional branching node is inserted into the execution tree
that models whether the index is inside the bounds of the array. Given an array with size
y and an index z, and assuming the exception was not thrown during execution, the path
constraint added is given by the SMT-Lib expression in Figure 4.7. If the actual execution
already triggered the exception, the assert statement would be negated to model values
that lie outside the array’s bounds. When solving for the constraint, it is negated again
to find values that either trigger or do not trigger the exception. Other instructions are
modeled accordingly.

– 40 –

4 Symbolic Web Application Testing

; Variable declarations
0 (declare−fun y () Int)
1 (declare−fun z () Int)

; Constraints
3 (assert (and (< z y) (>= z 0)))

Figure 4.7: SMT instance in SMT-Lib format [9] modelling the condition onwhich anAr-
rayIndexOutOfBoundsException is thrown while execution xALOAD or xASTORE.
The prefix x can be substituted with any type modifier. The constraint asserts that an ar-
ray index z is in bounds for an array of size y.

Handling dynamic invocations

While the primary usage for invokedynamic is specific to dynamically typed languages,
the instruction finds several applications as part of the javac compile chain discussed be-
low. With the addition of invokedynamic, the implementation of string concatenation
changed. Instead of utilizing the StringBuilder for concatenation, the new implementa-
tion utilizes bootstrappingwith the StringConcatFactory4 to concatenate strings. Boot-
strapping utilizes dynamic invocation. However, bootstrapped methods require novel
symbolic handling, as the way the parameters are passed differs from previous invo-
cations. The arguments for concatenation are passed inside the bytecode arguments,
more specifically as part of the bootstrap arguments. These arguments are visible to
the symbolic backend due to the addition to the instrumentation described previously.
Since Java’s Stringmethods are not instrumented, after a call to the corresponding boot-
strapmethod isdetected,wecanappropriately advance the symbolic stateusing symbolic
peers and prepare the return value that is pushed back onto the parent stack.

0 public int ex(int input){
1 int localVariable = 2;
2 Function<Integer , Integer> lambda = x −> localVariable ∗ x;
3 int res = lambda.apply(input) ;
4 return res ;
5 }

Figure 4.8: Example application of a lambda expression visualizing different aspects of
lambda expressions. The lambda expression is created in line 2. The method variable
(line 1) is accessed inside the lambda expression. The constructed lambda expression is
applied in line 3.

Lambda expressions are a feature enabled by invokedynamic and are, in contrast to the
4https://docs.oracle.com/javase/9/docs/api/java/lang/invoke/StringConcatFactory.html

– 41 –

4 Symbolic Web Application Testing

reworking of the string concatenation, not oblivious to the developer. They allow for a
new language construct. Figure 4.8 shows an exemplary application of a lambda expres-
sion. Lambda expression are a reference type, and the expressions parent object has to
inherit a functional interface.

Constant Pool:
#7 InvokeDynamic #0:apply:(I)LFunction;
#11 Method Integer .valueOf:(I)LInteger;
#12 class Integer
#17 InterfaceMethod Function.apply:(LObject;)LObject;
#22 Method Integer . intValue:() I

public int ex(int) ;
Code:

0: iconst_2
1: istore_2
2: iload_2
3: invokedynamic #7, 0
8: astore_3
9: aload_3

10: iload_1
11: invokestatic #11
14: invokeinterface #17, 2
19: checkcast #12
22: invokevirtual #22
25: istore 4
27: iload 4
29: ireturn

private static Integer lambdaex0(int , Integer) ;
Code:

0: iload_0
1: aload_1
2: invokevirtual #22
5: imul
6: invokestatic #11
9: areturn

Figure 4.9: Byte code for the source code shown in Figure 4.8. For readability, the Con-
stant Pool is significantly simplified. Entries that are not explicitly used in the code at
handareomitted. Entries in thepool aredereferenced,and the fullyqualifiedclassnames
are shortened. Themethodpublic int ex(int); is the compiledversionof themethod from
Figure 4.8. The second method (private static Integer lambdaex0(int, Integer);) is
generated from the body of the lambda expression shown in Figure 4.8 (line 2). It is com-
piled into a static method in the same class as the initial expression, shown here. The
lambda method performs the transformations specified inside the lambda expression.
It is constructed during compilation and is visible to all class loaders.

– 42 –

4 Symbolic Web Application Testing

A lambda expression is created in line 2, and the expression is assigned an object of type
Function, with one parameter and one return value, both of type Integer. The lambda
expression is applied in the following line (3). To gain a deeper understanding of how
far the dynamic invocation differs from other invocations and what needs to be adapted
to allow symbolic tracking of the parameters and return values of lambda expressions,
the bytecode for the source code from Figure 4.8 is listed in Figure 4.9. At first, a simpli-
fied version of the Constant Pool, alongside the compiled method (public int ex(int);),
is given. The lambda expression is rendered as a static method (private static Inte-
ger lambdaex0(int, Integer);) inside the class and not as an inner class. Compiling
the expressions as methods has optimization reasons that are omitted here. The static
method is generated at compile time and is thus visible to the instrumentation engine.
So, symbolically tracking what the lambda expression is performing is trivial. However,
a difference is apparent in comparing the signature of the initialFunction<Integer,Inte-
ger> object that stores the lambda expression and the signature of the generated lambda
method. In contrast, the original lambda expression requires one parameter, and the
generatedmethod requires two parameters. The difference in parameterswould not be a
problem if the parameters were prepared on the original stack. However, the invocation
of the lambda’s apply function (Line #17) has a single parameter and does not call the ac-
tual lambdamethod but an interface method of the object.

When the invokedynamic instruction is executed, the bootstrap method, which is part
of theLambdaMetaFactory, generates an implementationof the target functional inter-
face. Thegeneratedclass is a synthetic class that isdynamically generatedduring runtime
and is not accessible through the instrumentation API.Hence,we cannot instrument the
synthetic class and are oblivious to the class’s behavior; thus, a generic symbolicmodel of
this class is required to enable symbolic tracking of lambda expressions. The simplified
generated class for the example in Figure 4.8 is listed in Figure 4.10. It is responsible for
invoking the method containing the lambda expressions logic. Analyzing the class, it is
apparent why the signatures do not align in the example. The lambda expression uses a
local variable fromtheoriginalmethod that is unavailable in thegenerated staticmethod.
Hence, the generated method includes any formal arguments of the lambda expression
along any captured variables. The captured values, a primitive integer in the example,
are passed to the synthetic class through the bootstrapping method (as part of the in-
vokedynamic call) and are stored as class variables in the synthetic class (arg$1) during
initialization. Since the values are duplicated when the synthetic class is created, any
captured values in lambda expressions are required to be final or at least effectively final.
Themethod (public Object apply(Object);) generated as part of the synthetic class is the
method that is called by the original method and bridges the gap to the lambdamethod.

To summarize, lambda expressions are compiled as a static method inside the original
class that is instrumented, allowing symbolic tracking of its logic. The staticmethod, vis-
ible to instrumentation, expects the formal arguments of the lambda expression and any
captured values as parameters. When the compiler hits the creation of a lambda expres-
sion, an invoke dynamic call is added. On the first invocation of invokedynamic, a boot-
strap method is called which generates a synthetic class that implements the functional

– 43 –

4 Symbolic Web Application Testing

interface of the target and delegates to themethod containing the logic of the lambda ex-
pression. After creating the delegate, the call site is linked, and the bootstrap method is
not required again unless something changes. The synthetic class contains any captured
values passed as part of the invokedynamic arguments. To the best of our knowledge,
this class cannot be instrumented, requiring a symbolicmodel that correctly handles the
parameters passed to the lambdamethod.

final class Helper$$Lambda$207 implements Function

Constant Pool:
#13 Method Object."< init >" : ()V
#15 Field arg$1:I
#19 class Integer
#25 Method Helper.lambdaex0:(ILInteger;)LInteger;

{
private final int arg$1;

// $FF: synthetic class
private Helper$$Lambda$208(int) ;

Code:
0: aload_0
1: invokespecial #13
4: aload_0
5: iload_1
6: putfield #15
9: return

public Object apply(Object) ;
Code:

0: aload_0
1: getfield #15
4: aload_1
5: checkcast #19
8: invokestatic #25

11: areturn
}

Figure 4.10: Synthetic class generated at runtime by the JVM for the lambda expression
in Figure 4.8 (line 2). For readability, theConstant Pool is significantly simplified. Entries
not explicitly used in the code are omitted. Entries in the pool are dereferenced, and the
fully qualified class names are shortened. The class is generated using amodified version
of ASM [20]. The class prepares the arguments required to call the static lambdamethod
(lambdaex0) shown in Figure 4.9. The applymethod from the synthetic class is called
and, in turn, calls the actual lambdamethod.

The symbolic handling requires two stages because the captured values are prepared at
the location of the invokedynamic instruction. However, the invocation that leads to the

– 44 –

4 Symbolic Web Application Testing

execution of the instrumented lambda method is decoupled from the initial invokedy-
namic call (compare Figure 4.9 (offset 3 and offset 14)). The two instructions are con-
nected by the instance of the synthetic class generated during bootstrapping. The syn-
thetic class that is initializedduring the invokedynamic and consumedwhere the lambda
is invoked. The dependency can also be observed in Figure 4.9, where the Constant Pool
reveals that the return value dynamic invocation is an instance ofFunction (see entry #7)
that is consumed by the invokeinterface (see entry #17). We take advantage of this de-
pendency and augment the symbolic object returned by the dynamic invocation with the
additional captured values that are passed to the lambda method. When the lambda in-
vocation is reached, we retrieve the additional values during the preparation of the sym-
bolic frame. We can thus correctly modify the method’s frame with the corresponding
values. While handling captured values represents the general procedure, other condi-
tions, for example,when the parent reference is required inside themethod, are handled
accordingly.

Multi-threading

Popular frameworks for developingweb services in Java spawn a new thread per request,
allowing multiple requests to be received simultaneously. Hence a symbolic execution
engine is required to keep track of multiple threads in parallel. Symbolic execution en-
gines built on top of the JPF-JVM [31] can symbolically model multi-threaded behavior
and even detect locks in inter-thread communications. Multi-threaded lock detection is
not available in any instrumentation-based symbolic engine. CATG [64], in particular, al-
lows for nomulti-threading because the shadow state models one JVM stack (Figure 2.7)
andhasnowayofdifferentiating fromwhat threadan instructionoriginated. SWATuses
an adapted shadow state where thread-specific information is stored per thread. The ex-
ecuting thread is identified when an instruction is executed and the appropriate shadow
state is advanced. Effectively, the module responsible for tracking symbolic instructions
and advancing the shadow state is fully stateless and operates on the correct state based
on the current thread. Having the symbolic state stored per thread and a stateless sym-
bolic driver allows parallel symbolic execution of any number of threads. However, we
assume no intercommunication between the threads; for example, when two threads ac-
cess and modify the same static variable, the symbolic constraints are currently not cor-
rectly adapted. Nevertheless, if the static information is only read or is not part of the
constraints, the symbolic state is correctly tracked.

4.4 Symbolic Initalization

During symbolic execution, a subset of variables must be marked as free variables. The
SMTsolver couldnotfindnewvalueswithoutany free variableswhenall valuesarebound.
Wecall these free variables symbolic variablesbecause the symbolic executor tracks themin
abstract form, not their concrete value. Marking values as symbolic that are notmanipu-
lable by the user or the harness makes little sense. Hence specifying which values should
be symbolically tracked depends on the target application. SWAT offers several adapters

– 45 –

4 Symbolic Web Application Testing

to track specific methods and variables symbolically automatically. Two generic drivers
are described below. Because SWAT is focused on enabling web services to be tracked
symbolically,web-specific adapters are integrated to allow the developer to choose an ap-
propriate technique for automatically tracking values symbolically. Web-specific drivers
are introduced at the end of this section. CATG [64] requires the user to modify the ap-
plication’s source code to addmethod calls thatmark variables as symbolic. For example,
when an integer should be symbolically tracked, the symbolic value has to be initialized
by calling int x = CATG.readInt(2);. To add these calls manually, one requires access
to the source code or knowledge of how to add calls directly in bytecode, making the ap-
proach impractical. The manual placement of calls also prevents symbolic initialization
in libraries without manipulating the library code before loading it. Additionally, the
manual approach is time-consuming when the target application contains many vari-
ables that should be symbolically tracked.

Amethod thatmarks the beginning of the symbolic scope can often be identified. Mostly,
the parameters of thesemethods should be symbolically tracked. Such amethod can also
be identified in the examples used by Tanno et al. [64] and in benchmark datasets such
as OWASP Benchmark [51] (Section 5.2). We exploit this observation to offer automatic
initialization of symbolic variables. The user can specify methods or a regular expres-
sion to match a set of methods that should aid as symbolic initializers. Automatic ini-
tialization is facilitated by adding an additional instrumentation pass, during which we
detect methods that match the specified signatures. If a match is found, the method
body is retransformed to mark all parameters symbolically. Automatic transformation
to enable systematic symbolic initialization eases the usage significantly and mitigates
the requirement for the user to add additional logic to the source code.

Aside frommanually specifying symbolic values in the code and the method adapter de-
scribed above, SWAT also offers the option to automatically turn values returned from
user-specified function calls symbolic. Using a user-specified signature and configu-
ration option, SWAT automatically adds the required logic to make values that match
the descriptions symbolic by performing an additional instrumentation pass. Such sym-
bolic return values can, for example, be seen in the benchmark for Java-focused verifi-
cation tools, SV-Comp [15] (Section 4.6). The benchmark assumes all values returned
from methods satisfying the following regular expression to be free variables: r’org/-
sosy_lab/sv_benchmarks/Verifier/nondet.*’. Providing the regular expression, the in-
strumentationenginecan identify all invocationsof the specifiedmethod in instrumented
classes with no further action required by the user.

Aside from specifying what variables should be symbolically tracked, the scope of the
symbolic execution also needs to be defined. In particular, entry and exit points for sym-
bolic tracking need to be specified. While a user could manually add these calls to the
target application (see CATG), SWAT allows the user to specify methods that can be seen
as the harness for the symbolic execution. We automatically add required calls at the
beginning of all methods matching the specification to initialize the symbolic tracking
and add handling before each return statement contained in the method to terminate

– 46 –

4 Symbolic Web Application Testing

symbolic tracking. These calls are added using an instrumentation pass. Such a method
could, for example, be themainmethod of a program. When themainmethod is spec-
ified, the symbolic executor begins tracking when the method is entered, so when the
JVM startup sequence is complete, and exit just before termination of the program or
just before the method returns. Each method that correlates with an endpoint could be
specified in the web scenario to enable symbolic tracking when the request is handled.
Specifying multiple such methods that can be invoked, for example, by a web server, al-
lows the symbolic engine to track multiple threads in parallel. During the symbolic ini-
tialization of a particular variable, its type is determined, and constraints are built that
reflect the lower and upper bound of the symbolic variable. By default, the bounds are
enforced by the JVM,which is done to ensure compatibility with solvers that have poten-
tially larger bounds. Otherwise, the solver could find solutions outside the actual value
range. Bounds on symbolic variables can also be used to limit the search space by supply-
ing tighter bounds for variables. These bounds can be specified as a configuration option
by the user.

Spring endpoint

A popular frameworkwidely deployed for developing and servingweb applications is the
Spring framework [68]. The Spring Web MVC framework5 allows developers to easily
create RESTful web services by providing annotated controller classes.

0 @PostMapping("/request/{id}")
1 @ResponseBody
2 public String postController(
3 @RequestBody LoginForm loginForm,
4 @PathVariable("id") int id) {
5 ...
6 }

Figure 4.11: Example of a Spring [68] controller that is called by the framework when a
POST request is received at the path ”{base}/request/{id}”. The base path ({base}) is
determined by the parent class. The id {id} is an HTTP path variable that is passed as a
parameter to themethod. The request’s body is automatically deserialized into an object
of theLoginForm class. The return value of themethod is sent back as the response body
(@ResponseBody).

An example of amethod signature invokedona specificpost request is seen inFigure 4.11.
The method that handles the logic between request and response is part of the codebase
of the target. By specifying the@PostMapping(”path”) annotation, the method is reg-
istered by the Spring library as a method that listens for POST requests on the specified
path. The method has to be part of an annotated controller class with a base path. The

5https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/
mvc.html

– 47 –

https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/mvc.html

4 Symbolic Web Application Testing

handling between the receiving of the request in the web server to the correct invoca-
tion of the specified method with its parameters is handled by the library and is not in-
strumented. Using the previously described technique towrapmethods symbolically,we
automatically identify and wrap all methods with the correct signature and parent class.
User-specifiedvalues that arepart of the request arepassedasparameters. Hencewealso
use the previously described technique to mark all variables as symbolic. Spring offers
automatic deserialization of the request’s body into class objects such as the LoginForm
given in the example. We also provide support for full symbolic tracking of these data
objects. When such an object is encountered during the runtime and is not yet instru-
mented, we instrument the class to mark all class variables as symbolic. To summarize,
we give the user the possibility to specify that the system under test is a Spring-based
web service. SWAT then automatically identifies all exposed endpoints and wraps them
symbolically during instrumentation. The user can then use any system to send requests
to the target, including the symbolic explorer (Section 4.5). After the request is success-
fully handled, the symbolic constraints are automatically sent to the explorer for further
investigation.

HTTP Servlet

Servletsprovidedby the javaxpackageareanother techniqueoftenused for servingHTTP
endpoints. A servlet is a class that is responsible for request handling. Each servlet serves
a unique resource identifier (URI) and offers methods for all CRUD (create, read, up-
date, delete) functionalities. The servlet container is responsible for receiving requests
from the web server and calling the correct target servlet. The application under test
is the user-supplied code inside the servlet, not the underlying framework. Hence, in-
strumenting the entire frameworkwould significantly increase the time spent executing
parts of the application that are not under observation. An example of amethod respon-
sible for serving the POST requests is listed in Figure 2.9. We can automatically match
all classes andmethods listening to the servlet container using an instrumentation pass.
Using the above-discussed approaches of making the parameters symbolic does not di-
rectly transfer here because the parameters are objects inheriting the HttpServletRe-
quest andHttpServlerResponse classes for the request and response object, respectively.
The request and the response object are deeply nested within the framework; thus,mak-
ing these objects entirely symbolic is only feasible when symbolically tracking the entire
framework. However, the request object contains the values of interest, such as the cook-
ies, headers, and body of the request. One approach is to specify all methods that the
objects can have and mark all values these methods return symbolically. While the gen-
eral approach ofmarking the values symbolic that are retrieved from the request object is
promising, manually specifying all possible methods among different implementations
of theHttpServletRequest is time-consuming and error-prone.

To mitigate the need to specify all methods manually, we introduced a new behavior in
SWAT that allows generic objects to be marked as symbolic. The symbolic flag is transi-
tively propagated when an object is marked symbolic and not instrumented. Propaga-
tion is done by either method invocations or setting fields of the object. Transitivity is

– 48 –

4 Symbolic Web Application Testing

achieved by marking all objects retrieved from the symbolic object as symbolic. When a
primitive value is retrieved from a symbolic object, it is marked as a symbolic variable.
In the case of servlets, the transitivity allows easy symbolic tracking of invocation chains
such as request.getHeaders().getHeaderNames().nextElement() that can be scattered
across several lines in different classes. Symbolic objects also allow us tomark previously
concrete values, primitive or object, as symbolic when they are stored in the symbolic
object. We modify the routine developed by CATG that is responsible for fetching con-
crete values, used to keep the stack up to date, to check if a value should be symbolically
flagged. The flag is set during instrumentation, and the appropriate propagation is han-
dled during the runtime.

4.5 Symbolic Explorer

The symbolic executor (Section 4.3) is responsible for generating traces containing path
constraints for the instructions visited during execution. One trace is generated per exe-
cution of the symbolic executor, and the processing of the execution traces is completely
decoupled from the symbolic executor. The symbolic explorer is an independent compo-
nent that exposes several endpoints to receive information from the symbolic executor.
The independence from the symbolic executor allows the symbolic explorer to be located
on a separate host, increasing the performance and enabling the target application to be
hosted onmultiple machines in parallel.

The symbolic explorer receives traces, described below, from the symbolic executor and
adds the trace to the corresponding execution tree. After the trace is received, the HTTP
connection is terminated before the trace is processed tominimize the time the symbolic
executor spends waiting. The asynchrony is possible because the symbolic executor does
not require any information from the explorer since it does not keep track of the state of
symbolic execution. After a trace is successfully sent, all information regarding the trace
is discarded. The explorer also offers endpoints to query for inputs leading to previously
unexplored branches. To facilitate the symbolic execution of a target with multiple sym-
bolic entry points, i.e., multiple endpoints, each trace contains an id that identifies the
symbolic entry point. The explorer uses that id to distinguish between different execu-
tion trees stored in the database. The traces received from the symbolic executor contain
all information required to sequentially build the execution tree, determine unexplored
branching points and create an SMT instance that represents the path.

A trace T = (T, I) contains a list of execution elements T and a set of inputs I. Each
execution element contains an instruction id. There are two types of execution elements;
branch elements additionally contain information on whether execution branched at the
specific instruction and, if available, the constraint(s) that model the branching condi-
tion. All instructions that can actively diverge the control flow and instructions with a
symbolic model for their exception behavior are represented in the trace using a branch
element. Special elements model all instructions that could cause an exception that has
no symbolic model (see Table A.1) and instructions that can cause a class to be loaded

– 49 –

4 Symbolic Web Application Testing

and the static initializer to be executed. Classes can be loaded either by invoking a static
method (invokestatic), creating a new instance (new), or setting/ retrieving a static field
(put/getstatic) of a class that is not yet stored in memory. While the symbolic explorer
cannot determine new inputs for these elements, they are required to build a consistent
execution tree. Without special elements, different execution traces could not be com-
bined and inserted into a binary tree.

The trace T also contains a set of inputs I that contains one input element for each sym-
bolic variable encountered during the execution. Each input element contains the map-
ping between the symbolic name (used in the solver context) and the concrete value seen
during execution. The concrete information is required, especially when a satisfying as-
signment does not contain all variables. Input elements also store the variable’s type
information and the associated constraints for bounding the value to the allowed value
range. The trace is serialized using JSON to allow easy interoperability between different
explorers and executors in the future.

...
12: iload_1 // i1
13: ifne 18
16: iconst_0
17: ireturn
18: iload_1
19: iload_2
20: idiv
...

(a) Program

Trace: 1 Branch0
IID: 3078
Branched: False
Constraint: i1≠0

Branch1
IID: 3093
Branched: True
Constraint: ...

Trace: 2 Branch0
IID: 3078
Branched: True
Constraint: i1=0

Leaf0
Symbolic: i1
Concrete: 0
Bounds: ...

(b) Two partial execution traces

B0

L0B1

3078

3093

B0

L0B1

(c) Partial execution tree

Figure 4.12: Example for trace and execution tree generation. The program snippet (a)
loads an integer (symbolic integer i1) and branches based on the value of the integer. One
branch returns, while the other performs an integer division. The part of a trace corre-
lating to the snipped is shown in (b). Trace 1 contains an execution that did not branch,
while trace 2 branched. The IID for each branch element is the id for the corresponding
instruction. The corresponding part of the execution tree is shown in (c).

All execution trees start with a root node representing the specific entry point (such as
a method) into the symbolically observed code region. With every new trace received,
the tree gradually expands as the number of paths the symbolic executor has visited in-
creases. Each tree is a binary tree where each node has, at most, two children, and no
cycles are present. The binary structure without cycles is inherited from the structure
of the execution traces, as each trace is a linear sequence of elements that contains no
cycles. While the program that is analyzed may contain cycles, the trace only contains
the unrolled loop with a fixed number of iterations after execution. The instruction ids
are used to assemble the tree. All instructions that can diverge the control flow are rep-
resented as inner nodes. Each leaf represents the inputs that were recorded along the
respective path. Figure 4.12 visualized the steps from a code snippet (Figure 4.12a), via
traces (Figure 4.12b) to the execution tree (Figure 4.12c). The program excerpt loads an

– 50 –

4 Symbolic Web Application Testing

integer, assumed to be symbolic, compares it against zero, and either returns zero or
performs a division. The excerpt is chosen to highlight the creation of a branch based on
a conditional jump (ifne) or based on exception modeling (idiv). Parts from two traces
are highlighted that correspond to the code shown. Trace 1 did not branch at offset 13,
while trace 2 did. The constraints are listed in the trace elements based on the branching
behavior. Trace 2 returned at offset 17 and hence has a Leaf element as its last trace el-
ement that stores the symbolic and concrete values of the inputs and their bounds. The
combination of both traces based on their instruction ids (IID) is shown in the execution
tree. The dotted edges and arrows symbolize the continuation of the tree or trace outside
the scope of the program section.

To find new paths to explore, branching points with symbolic conditions and an unex-
plored path need to be determined. As briefly discussed in Section 3.1, work exists to
optimize the selection of new branches. While optimized heuristics are also planned for
SWAT, a breadth and depth-first (BFS/ DFS) search is currently supported. Using BFS,
nodes closer to the root are preferred, and thus branches that are earlier in the execu-
tion trace are preferred, whereas, for DFS, branches closer to a leaf are selected first.
In combination with a fuzzer, selecting branches retrieved using BFS may enable the
fuzzer to fuzz large new subtrees while using DFS we may be able to guide the fuzzer
towards deeper, and more specific, parts of the state space. We can observe the number
of times the driver has passed a branching point. Weighing nodes retrieved using BFS
by the number of times they were seen may also prove beneficial in combination with a
fuzzer. All nodes with symbolic constraints and only one child are selected as possible
branches during searching. Before a new input can be determined, all path constraints
that need tohold to reach thepoint in the executionneed tobe added to theSMT instance.
The constraints are accumulated by traversing the tree from the selected node up toward
the root, collecting all encountered constraints, and adding them to the SMT instance.
The constraint that should be solved for is negated to find an instantiating that leads the
execution into the unexplored areas. Additionally, the bounds for all symbolic inputs are
added to the instance before the solver is queried. If the solver does not find a satisfying
assignmentwithin a configurable time, the next branch is selected, and the process is re-
peated. If a new solution is found, it is stored in the tree, similar to the inputs, as a leaf
at the position where the values should lead. Storing the solutions as leaves prevents the
solver from accidentally solving for the same branchmultiple times and allows the solver
to constantly solve for new branches without actual execution of the inputs. The leaf is
replaced with the actual trace when it is encountered.

Currently, the solver is only used to find any instance that satisfies the constraints. How-
ever, using an optimization solver to find minimal or maximal assignments will be ex-
plored in the future. To facilitate machine learning guided state selection in the future
we offer additional metadata per branching point. The additional information that is
currently stored per branch includes the size of the currentmethod stack, the locals size,
and the depth of the call chain. This information is also stored as part of the execution
tree.

– 51 –

4 Symbolic Web Application Testing

4.6 Evaluation

Before we discuss specific features of SWAT for finding vulnerabilities in web services,
we evaluate the efficiency andeffectiveness of SWATas a symbolic execution engine com-
pared to other symbolic execution engines and tools for verification of Java software. This
evaluation serves as a reference to quantify the performance of SWAT and allows classifi-
cation and placement of SWAT compared to the current state of the art. CATG [64] is not
included in the evaluation because of its condition. Without significant modifications,
the system cannot run at all, and with the number ofmissing symbolic datatypes, it can-
not reasonably compete on the benchmark we present below.

SV-Comp[15] is a yearly competitionheldat the InternationalConferenceonTools andAl-
gorithms for theConstructionandAnalysis of Systems (TACAS),providinganestablished
set of verification tasks for comparing tools focused on software verification. The com-
petition has several tracks, including a Java track. The tasks are all compiled using Java 7
and do not test for modern language features such as lambda expression. However, the
benchmarkprovides an independent andcomparabledatasetwithknownproperties that
can be used to compare and classify the performance of verification tools. Each test case
consists of several classes and a known entry point. The task of the verifier is to evaluate
whether the code contains any assertions that are reachable and do not hold. The bench-
mark assumes all values returned frommethods that match r’org/sosy_lab/sv_bench-
marks/Verifier/nondet.*’ are free variables. As previously described, SWAT provides an
adapter that easily enables symbolic tracking of all these values. However,methods pro-
vided by the benchmark return a random value instead of a controllable value. To enable
symbolic execution,we provide a separate class,which reimplements themethods and is
automatically substitutedduring instrumentation. Thebenchmark contains a total of 473
test cases, out ofwhichwe compared SWATon 297 cases. The testsweused for evaluation
are the regression tests from three popular verification tools, including two symbolic ex-
ecution engines, JDart [43] and JPF [31], and JBMC, a boundedmodel checker [24]. Other
test classes were omitted because of (currently) unsupported features such as recursion,
multi-threaded lockdetection, or unsupported loopingbehavior. The regression tests are
comparatively small test cases that evaluate specific functionality.

To provide comparable results, BenchExec, a framework for reliable benchmarking and
resource measurement [16], is used to orchestrate the task distribution and provides a
wrapper for each evaluation run. We evaluated all tools using a 60 second time limit
and a memory limit of 3000MB with one core per task against the same subset of tasks
to provide comparable results. The evaluations were performed inside the BenchExec
framework on an AMD EPYC 3151 4-Core Processor running Ubuntu 20.04.4 LTS with
128 GB of RAM. To enable the classification of SWAT compared to the current state of
the art, we include all competitors from the Java track at SV-Comp 2021 [15] in our eval-
uation. The competitors include several symbolic execution engines. Namely, SPF [55],
COASTAL [36], JDart [43], and Java Ranger [61] a symbolic execution engine built on top
of SPF that enables path-merging using veritesting for Java. Veritesting combines static
and dynamic symbolic execution [5] to limit the effects of path explosion by summariz-

– 52 –

4 Symbolic Web Application Testing

ing paths using static symbolic execution. Additionally, JBMC [24], a bounded model
checker, and JayHorn [37], a model checker based on Horn clauses, are included.

−50 0 50 100 150 200 250 300 350 400 450
1

10

Cumulative Score

M
in
.t
im
ei
n
s

JDart
SWAT
JayHorn
Java Ranger
SPF
COASTAL
JBMC

Figure 4.13: Score-based quantile plot [14] for qualitative analysis of verification results.
Tools evaluated on a subset of tasks from the SV-Comp 2021 [15] Java track using the
benchmarking framework BenchExec [16]. Each verification task is ordered by the run-
time as a cumulative score. The y-axis shows the time taken for each task on a log scale.
The x-axis shows the cumulative score for each tool.

Each tool can classify a test case as eitherTrue,False orUnknown. Test cases labeled asTrue
contain no violation. That is, no instantiation of the variables exists, so an assert state-
ment inside the test case is violated. Analogously, for test cases labeled False, an instan-
tiation of the variables exists, leading to an assertion violation. Correctly identified test
cases without a violation are awarded two points, while misclassified test cases without
a violation are penalized by −32 points. Test cases containing a violation are rewarded
with one point when correctly identified and penalized with −16 points otherwise. If a
violation is present the test case is weighed less because it is generally easier to prove the
presence of a violation (by finding the correct) inputs than to prove the absence of one.
Tools can also classify a test case as unknown, resulting in neither gained nor lost points.
When we detect that a call leaves the instrumented area and no symbolic model for the
function is available, and no instantiation proves the presence of an assertion, we label
the test case unknown.

– 53 –

4 Symbolic Web Application Testing

To understand the comparative evaluation results, Figure 4.13 plots score-based quan-
tile functions for each participant. The plot is analogous to the quantile plots used in the
SV-Comp competition results byBeyer [15]. Thefigure plots time in log scale on the y-axis
against the cumulative score on the x-axis. Each function maps the minimum required
time it took to achieve a given score. The left end of the graph visualizes the total amount
of incorrect work, while the right end highlights the tools achieving the highest score.
If a tool reaches the same number of points as another tool while maintaining a lower
runtime for the slowest test case, its y value is lower. Hence the rightmost tool with the
lowest y value is the best-performing tool regarding effectiveness and efficiency. Over-
all, in the cumulative score, SWAT scores fourth place behind Java Ranger [61] in third
place, JBMC [24] in second, and JDart [43] in the first place. This places SWAT as the sec-
ond highest-scoring purely dynamic symbolic execution engine and the highest-scoring
instrumentation-based dynamic symbolic execution engine in front of COASTAL [36].
JayHorn scores last here; however, in 66 cases, it ran into a timeout. JayHorn’s time is-
sues are already apparent from Figure 4.13 as JayHorn requires the most time for each
quantile. The runtime for the other tools remains almost the same until they reach ap-
proximately 200 points. SWAT is the first tool to see a significant increase in runtime,
followed by Java Ranger and SPF.However, the way the test cases are designed,without a
symbolic harness that can drive the function, each test case requires a restart of the JVM
for each new input. SWAT does not provide such a harness by design because the system
is focused on testing applications that stay online (web applications) between runs. The
design of the benchmark implies that the efficiency of SWAT evaluated by this bench-
mark is not transferable to the targets SWAT is designed for. Additionally, because each
test is run in a separate container, we have to run the symbolic explorer for each test case
adding additional overhead that is not required in an actual deployment. Furthermore,
the benchmark is designed to be compiled using Java 7. Hence, the benchmark does not
consider modern language features such as lambda expressions that were introduced in
Java 8.

A detailed breakdown of the results is listed in Table 4.14. The results are split into three
groups. Test cases that were correctly classified appear in the first group. Incorrect clas-
sifications are listed in the second group, and all other cases are accumulated in the third
group. Undetermined test cases include timeouts, out-of-memory errors, and unknown
verdicts of the verifiers. Each group lists the total number of cases in the group and a
differentiation between test cases that contain no violations (True) and cases that con-
tain a violation (False). Lastly, the overall score achieved by the respective tool is given. e
SWAT achieved a score of 347, and correctly identified 87.54% of all test cases and 92.76%
of the violations, while 82.07% of test cases without a violation were correctly identified.
In addition, 70% of the undetermined test cases contain no violation. The results indi-
cate that SWAT ismore effective at finding violations than proofing their absence. SWAT
missed ten test cases containing a violation, and all ten of these cases containedmethods
for which no symbolic model exists yet. Out of the 24 test cases containing no violation
classified as unknown by SWAT, 29.17%were due to missing symbolic methods.

– 54 –

4 Symbolic Web Application Testing

Table 4.14: Detailed results from SV-Comp 2021 [15] benchmark with all competitors and
SWAT on 297 out of 473 test cases. Results include all regression tests from JBMC [24],
JDart [43] and JPF [31]. Results are grouped by correct, incorrect, and undetermined
results. Undetermined results contain timeouts, out-of-memory errors, and unknown
scores by the verifier. Each group is split into test cases that contain no violations (True)
and cases that contain violations (False).

JDart JBMC Java Ranger SWAT COASTAL SPF JayHorn

Correct Results 293 289 271 260 271 226 172
Correct True 143 140 139 119 134 122 100
Correct False 150 149 132 141 137 104 72

Incorrect Results 0 0 0 1 2 1 0
Incorrect True 0 0 0 1 2 0 0
Incorrect False 0 0 0 0 0 1 0

Undet. Results 4 8 24 36 24 70 125
Undet. True 2 5 4 26 11 22 45
Undet. False 2 3 20 10 13 48 80

Score 436 429 410 347 341 332 272

Various reasons cause the remaining cases; 8.33% are caused by either a timeout or out-
of-memory error. Timeouts can occur for several reasons. The execution of the target
or constraint solving may not finish in the required time. Alternatively, a combination
of several factors may result in insufficient time to explore all branches. Other unknown
verdicts are either caused by an unexpected error during execution or a combination of
constraints that are not solvable due to the limitations of the solver. We have only rarely
observed unsolvable constraints. The ones we observed were caused by either large ex-
pressionsover stringsor repeated transformationsbetweennumerical andbit vector the-
ories. A coverage analysis is not provided on the benchmark because to consistently iden-
tify a test case as safe,weneed to be able to evaluate the entire state space of the program.
Otherwise, the faulty assumption could be located in the unevaluated code region, caus-
ing an incorrect result. This was the case for one test that is discussed in detail below.

One test case that contains a violation was incorrectly classified by SWAT. To evaluate
why we misclassified this case, the corresponding method under test is shown in Fig-
ure 4.15. In the test case, the additionmethod is wrapped by the main method, wherem
and n are initialized symbolically. After some checks, the values can only reach the ad-
dition method if they satisfy 0 < m,n < 10000. The value c is not symbolically tracked
and is always initialized to 0. Hence the only way the branching condition in line 4 could
be symbolically evaluated is if the implicit data flow between the recursion and the incre-
mentation of the value c is recorded. SWAT has no functionality to track such implicit
dataflow between symbolic and non-symbolic variables (i.e., n and c) and hence has no
symbolic formula for the branch.

– 55 –

4 Symbolic Web Application Testing

Without a symbolic model for implicit flows, it leads to a full exploration of the symbolic
space without triggering the assert statement and a wrong classification.

0 public static int addition(int m, int n, int c) {
1 i f (n == 0) {
2 return m;
3 }
4 i f (c >= 150) {
5 assert false ;
6 }
7 i f (n > 0) {
8 return addition(m + 1, n − 1, ++c) ;
9 } else {

10 return addition(m− 1, n + 1, ++c) ;
11 }
12 }

Figure 4.15: Method taken from test case jdart-regression/addition01 from SV-Comp
[15]. n and m are symbolic variables with 0 < n,m < 10000. The test case is labeled
False because the assertion in line 5 can be triggered.

To summarize, the evaluation places SWAT in the midfield of evaluated state-of-the-art
tools achieving fourth place overall. However, the evaluation was only performed on a
subset of the test cases, and while that highlights limitations, the evaluated test cases
underline the system’s performance. Considering the relative immaturity of our system
and missing features such as symbolic peers, the evaluation indicates the potential of
SWAT, a loosely coupled instrumentation-based symbolic execution engine, being the
best-ranking instrumentation-based symbolic execution engine.

– 56 –

5
Vulnerability Detection

Theprevious chapter has introduced the architecture anddifferentmodules of SWATand
demonstrated the potential of a loosely coupled instrumentation-based symbolic execu-
tion engine to find and detect violations in a benchmark designed to compare software
verification tools. This chapter explores the applicability of SWAT on web services for
detecting vulnerabilities.

5.1 Identifying Vulnerabilities

Symbolic execution provides the possibility to systematically explore the state space of a
programwhile generating variable assignments that correspond to each explored branch
of the execution tree. Hence symbolic execution is well-suited as a carrier for evaluating
the program’s properties under test. Unless symbolic execution is used for self-validating
properties such as the existence or absence of crashes, additional functionality must be
added to evaluate theproperties under test. For example, in theSV-Comp [15] benchmark
(Section 4.6) that was previously discussed, additional assert statements were added to
the source code. Asserts are compiled as branching instructions that throw an exception
depending on the value. These statements allow symbolic execution to both symbolically
check the property (as it is compiled as a standard branch) and see if it is violated based
on whether an exception is thrown. While a similar approach might be possible for de-
tecting vulnerabilities, it would require the manual addition of comparable statements
into the application’s source code. However, SWAT does not require access to the source
code of an application and is purposefully designed to require little manual labor to use
the system. This chapter explains how SWAT can automatically detect vulnerable state-
ments and dynamically evaluate if a vulnerability is present. In addition, the effective-
ness of SWAT in finding vulnerabilities is evaluated using a state-of-the-art benchmark
maintained by OWASP [51] for comparing different vulnerability detection tools.

The types of vulnerabilities present in code can vary significantly depending on the type
of code and the interfaces exposed to potentiallymalicious actors. Hence the type of han-
dling required to detect a set of vulnerabilities also differs. Vulnerabilities typically as-
sociated with compiled languages likeC are not of concern for JVM-based languages be-

– 57 –

5 Vulnerability Detection

causenodirectmemorymanagement by the code is possible. Hence,SWATdoesnot con-
sider memory safety vulnerabilities like stack- or buffer overflows. Instead, we focus on
vulnerabilities typically present inweb applications because SWAT is geared towardsweb
services. In particular, we focus on injection attacks, including SQL injection, cross-site
scripting attacks, and command injection attacks, as described in Section 2.3. OWASP
ranks injection attacks among the top ten application security risks [53].

Injectionvulnerabilities aredata flowdependent and typically rely on source-to-sink flowof
data. Sources include method calls that load user-controlled data into the program, and
sinks are methods that execute some functionality vulnerable to malicious input. One
example of an SQL injection is shown in Figure 2.9. In the scope of this method, line 4 is
considered the source because it loads a user-controlled header value into the context of
themethod. Line 8 contains amethod call that executes an SQL statement and is consid-
ered the sink because if a malicious user controls the sql string, an SQL injection could
be performed. The nature of injection attacks tailors well to symbolic execution, primar-
ily because an injection attack contains a user-controlled input that can execute some
unintended functionality. Because we consider method calls as sources that introduce
user-controlled data into the program, we canmark these values as symbolic values. We
can either reuse the custom adapters introduced in Section 4.4 for popular frameworks
or mark particular objects or methods as symbolic, as described below. One possibility
used in Jaint [49] is to add taint tracking capabilities on top of the symbolic execution to
observe if a tainted value propagates to a sink. SWAT uses a similar approach; however,
we utilize symbolic execution as the taint propagation engine. When a sink is reached,
we check if it contains a symbolic value, and if that is the case, an injection vulnerability
has been found.

Source detection

Correctly identifying potential sources for injection attacks is vital to achieving good de-
tection results. However,whatmethods shouldbe considered sourcesdependson the an-
alyzed target. Hence we allow the user to specify a list of regular expressions or concrete
methods that should be tracked as sources. SWAT then uses the functionality described
in Section 4.4 to set a flag during instrumentation to each method call that matches the
user’s specification. BecauseSWAToffers symbolic valuepropagation evenonun-instru-
mented objects, for the OWASP benchmark [51] used below for evaluation, it is suffi-
cient to specify the following regular expression: javax/servlet/http/HttpServletRe-
quest.*(*)*. This regular expression matches all methods (first wildcard) from the class
HttpServletRequeswithall signatures (secondwildcard) andall returnvalues (thirdwild-
card). To, for example, onlymatchmethods that return a string, the third wildcard could
be replaced with Ljava/lang/String;. Without symbolic propagation, the user would
have to specify everymethod that returnsaprimitive valueunder theuser’s control. Spec-
ifying all suchmethodswould increase the risk ofmissing somemethods and is a tedious
process.

– 58 –

5 Vulnerability Detection

Sink detection

Depending on the type of injection attack, different methods need to be considered as
possible sinks. What exact methods need to be considered is also dependent on the li-
brary that is used to, for example, communicatewith a database. While we allow the user
to specify all methods, as usual, using either the full name or a regular expression, we
also include a comprehensive list of vulnerable sinks. To demonstrate versatility, we use
a list6 provided by FindSecBugs [56]. For each sink, we evaluate the parameters passed
into the sink for symbolic variables. If a sink is reached and a parameter contains a free
variable, it is considered vulnerable. Our assumption aligns with OWASP’s definition of
injection vulnerabilities, where if any user-controlled value reaches a sink, it is consid-
ered vulnerable. We add an additional instrumentation pass to detect sinks that check
for all methodsmatching the specification. Wemust evaluate each parameter regarding
its symbolic status if such a method is found. To evaluate the parameters, we insert a
custommethod call before each sink that expects the same arguments and is responsible
for evaluating the symbolic variables. Thismethod is added during instrumentation and
requires duplication of the parameters of the original method. However, we cannot sim-
ply duplicate all method parameters because they have an arbitrary depth on the stack
that we cannot reach. To achieve the duplication, we evaluate free slots in the locals dur-
ing instrumentation and temporarily store all parameters in the locals to retrieve them
twice.

5.2 Evaluation

To evaluate the effectiveness of SWAT at correctly identifying vulnerabilities, we use a
benchmarkdevelopedbyOWASP [51]. Thebenchmark is a runnablewebapplicationwrit-
ten in Java. The app contains a total of 2740 endpoints spanning eleven types of vulner-
abilities. Each endpoint either contains one vulnerability or none. As this thesis’s scope
is limited to injection attacks, a total of 1572 cases across six categories remain for eval-
uation. We further remove test cases from the LDAP injection category because the test
cases are corrupt. Due to version issues, the benchmark is unable to instantiate the LDAP
connection. A detailed overview of the categorieswe used and their test cases can be seen
in Table 5.1. Overall, 1513 test cases from five categories were used for evaluation. From
each category, all test cases are used for evaluation. The benchmark is designed to pro-
vide a test suite that can be used to evaluate vulnerability detection tools on real-world
issues represented in small self-contained test cases. Thesuite supports analysis bySAST,
DAST, or IAST tools that support Java.

6https://github.com/find-sec-bugs/find-sec-bugs/tree/99814871f33ca0484b975f2fe51bae2bc1bcf40a/
plugin/src/main/resources/injection-sinks

– 59 –

https://github.com/find-sec-bugs/find-sec-bugs/tree/99814871f33ca0484b975f2fe51bae2bc%201bcf40a/plugin/src/main/resources/injection-sinks
https://github.com/find-sec-bugs/find-sec-bugs/tree/99814871f33ca0484b975f2fe51bae2bc%201bcf40a/plugin/src/main/resources/injection-sinks

5 Vulnerability Detection

Table 5.1: Overview of number of test cases per category in the OWASP Benchmark [51].
Only the five categories used for evaluation are listed.

Name CWE Total Vulnerable Secure
Path traversal 22 268 133 135

Command injection 78 251 126 125
SQL injection 89 504 272 232

Cross-site scripting 79 455 246 209
XPath injection 643 35 15 20

Total - 1513 792 721

For the OWASP evaluation, we used a first-generation Apple M1 MacBook Pro (A2338)
with 8GB of RAM runningmacOS 13.0 beta. We ran the Benchmark using the OpenJDK
Runtime Environment (build 16+36-2231). Using the crawler provided by OWASP, SWAT
can evaluate the entire test suite on average in 30 seconds over three runs. To put the
required time into perspective, we compare our runtime to Jaint [49]. Jaint has a similar
design but builds on top of SPF [55], so it utilizes the JPF-JVM [31]. Their artifacts are not
public, sowe cannot evaluate the two systems directly. However,Mues et al. report an av-
erage runtime of 1879 seconds on an Intel Core i9-7960Xmachine with 128 GB RAM.The
difference in runtimes highlights the potential of SWAT in the context of vulnerability
detection in web applications Especially considering that SWAT provides a simple de-
ployment, as it runs in the native web application provided by OWASP without symbolic
peers or a symbolic harness. To attach SWAT to the benchmark, we update the runtime
configuration of the provided build file and add the location of the packaged engine as a
JVM parameter. Additionally, we provide the configuration file.

Figure 5.2 visualizes confusion matrices for each category, to evaluate the accuracy of
SWAT at detecting the vulnerabilities of different categories. The first column of every
category shows that no test cases were falsely labeled as vulnerable, implying that SWAT
has a precision of 1.0 or every test case reported as vulnerable is vulnerable. The second
column reveals that SWAT can detect between 70% and 93% of the vulnerable cases with
an average (arithmetic mean) detection rate of 75.81%.
We evaluated five open-source static vulnerability scanners on the same classification
tasks, to put SWAT’s performance in perspective. We used the presented scanners be-
cause they are provide run configurations for the benchmark and are supported by
OWASP’s evaluation. While other tools, especially IAST frameworks, would be interest-
ing for comparison the ones that provide configurations require a licence.

– 60 –

5 Vulnerability Detection

Secure Vulnerable

Pred.
Secure

Pred.
Vuln.

1 0.29
0 0.71

0

0.20.40.60.81

(a) CWE 22:
Path traversal

Secure Vulnerable

Pred.
Secure

Pred.
Vuln.

1 0.21
0 0.79

0

0.20.40.60.81

(b) CWE 78:
Command injection

Secure Vulnerable

Pred.
Secure

Pred.
Vuln.

1 0.19
0 0.81

0

0.20.40.60.81

(c) CWE 89:
SQL injection

Secure Vulnerable

Pred.
Secure

Pred.
Vuln.

1 0.3
0 0.7

0

0.20.40.60.81

(d) CWE 79:
Cross-site scripting

Secure Vulnerable

Pred.
Secure

Pred.
Vuln.

1 0.07
0 0.93

0

0.20.40.60.81

(e) CWE 643:
XPath injection

Figure 5.2: Evaluation of SWAT on 1513 injection vulnerabilities in OWASP benchmark
test suite. Results are grouped by type of vulnerability as differentiated by the common
weakness enumeration system (CWE) [47]. For each vulnerability type, a confusion ma-
trix is plotted that shows the relative number of correctly or incorrectly classified sam-
ples into either vulnerable or Secure. Each matrix’s first column contains all Secure test
cases, and the second column contains vulnerable test cases. The rows summarize the
cases classified as Secure (first row) and vulnerable (second row). The percentage of cor-
rectly classified samples (per class) can be read along the diagonal.

We first plot the results in the same format the OWASP benchmark presents. Figure 5.3
plots the true positive rate against the false positive rate. We achieve a recall of 0.76 and
a false positive rate of 0.0. The further away a tool is from the red dashed line, the better
the precision. All points below the line performworse than guessing, while points above
indicate better performance. Tools located closer to the origin, such as Insider [34], eval-
uate most cases as benign. Hence both true and false positive rates are low. Tools closer
to the top right end of the spectrum, such as ShiftLeft Scan [62] and FindSecBugs [56],
classify many cases as vulnerable, resulting in both a high true positive rate and a high
false positive rate. SWATcan clearly outperform the presented toolswith a high true pos-
itive and low false positive rate. However,Mues et al. report a perfect precision of 1.0 for
Jaint [49]. Jaint is not included in the plot because we cannot evaluate the results as the
tool has no public artifacts.

– 61 –

5 Vulnerability Detection

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

A

B

C
DE

F

False Positive Rate

Tr
ue
Po
si
tiv
eR
at
e

OWASP Benchmark v1.2 Results Comparison

Guessing
A: Insider [34]
B: Semgrep [58]
C: CodeQL [30]
D: ShiftLeft Scan [62]
E: FindSecBugs [56]
F: SWAT

Figure 5.3: Evaluationadapted fromtheOWASPBenchmarkevaluation. Each tool is eval-
uated regarding its true positive rate and false positive rate. Tools residing below the
dashed line performed worse than guessing. The best-performing tools are located at
the top left of the plot, where the true positive rate is maximized, and the false positive
rate minimized. Evaluation is performed on all injection attack vulnerabilities, exclud-
ing LDAP injection attacks, because the benchmarks LDAP connections are erroneous.

True and false positive rates only paint a part of the overall picture. TheF1 score combines
recall and precision into a single metric by calculating their harmonic mean. An F1 score
of one indicates perfect precision and recall, while an F1 score of zero indicates that both
recall and precision are zero. F1 scores can be used to compare the performance of two
classifiers and is more expressive than accuracy, especially if the dataset is not balanced.
The F1 scores for the evaluated tools are plotted in Figure 5.4. Insider [34] performs the
worst with an F1 score of roughly 0.2. Semgrep [58], CodeQL [30], ShiftLeft Scan [62],
and FindSecBugs [56] all score between 0.69 and 0.77 while SWAT achieves an F1 score
of 0.86 outperforming the evaluated tools. In general, we see static vulnerability scan-
ners, such as the ones evaluated here, to perform better on vulnerability classes that do
not contain data-flowdependent behaviour. Misconfigurations, for example tend to have
higher scores on static tools. Mues et al. did not publish additional classification data;
hence, no F1 score is available for Jaint [49].

– 62 –

5 Vulnerability Detection

Insi
der

[34]

Sem
gre
p [5
8]

Cod
eQL

[30]

Shi
ftLe

ft S
can

[62]

Fin
dSe

cBu
gs [
56]

SW
AT

0

0.2
0.4
0.6
0.8

F1
sc
or
e

F1 Score on OWASP Benchmark injection attacks

Figure 5.4: F1 scores of different vulnerability scanners and SWAT on the injection at-
tacks present in the OWASPBenchmark evaluation. LDAP injection attacks are excluded
because the benchmark’s LDAP connections are erroneous.

Overall, SWAT outperforms the evaluated SAST tools on both the F1 score and OWASP’s
evaluationwhile achieving comparable runtime to static scanners on the OWASP bench-
mark. Compared to Jaint, a similar IAST approach, SWAThas slightly lower performance
while reducing the runtime by a factor of 60 on a less capable processor. While the evalu-
ationwas only performedona subset of vulnerabilities, the results highlight the potential
of SWAT as a loosely coupled instrumentation-based symbolic execution engine.

5.3 Transferability to Real World Applications

Theevaluationspresented in this thesis allow foraquantificationofSWAT’s effectiveness.
However, both the SV-Comp [15] and OWASP benchmark [51] are synthetic benchmarks
designed to provide quantitative results that can be used to classify the performance of
the evaluated tools. The vulnerabilities present in the OWASP benchmark are based on
observations in real-world applications to maximize the transferability of the results to
the performance on real applications. Still, the individual tests are reduced to small cases
showcasing the provided vulnerability.

However, SWAT is designed to be applicable to web service applications that run in their
native (cloud) configuration where all required external services are available. The sym-
bolic executor provides configurable symbolic adapters to integrate SWAT into projects
using a supported framework automatically. We enable symbolic executionwhile the ap-
plication is managed through the underlying web server. In particular, we replace the

– 63 –

5 Vulnerability Detection

need for an active harness by utilizing the request handling to initiate symbolic execu-
tion. To initialize requests, we require an external component to identify all exposed
endpoints and automatically build the correct requests with all required fields. The sym-
bolic explorer could be used to fulfill that task, but this requires manual specification of
the endpoints and their format. To prevent manual specification, the external compo-
nent would need to be able to identify the endpoints and their structure automatically.
Automatic detection and request generation is available as part of the RESTler fuzzer [4],
which utilizes the OpenAPI specification [65]. By integrating a module into the fuzzer
that facilitates the output of the symbolic execution as a heuristic in the mutation pro-
cess of the fuzzer, we can evaluate large-scale applications without manual specification
of endpoints and request formats. The RESTler integration is developed, in parallel to
this thesis, by Florian Sieck, Institute for IT-Security. To facilitate pure symbolic execu-
tion, one could build an external component similar to RESTler, but without the fuzzing
core. This was not done as part of this thesis because we aim to integrate and facilitate
symbolic execution-guided fuzzing in the future.

By combining a request generator, such as RESTler, and our symbolic engine, we will be
able to automatically test web applications that rely on a supported framework such as
Spring [68] or javax servlets. By combining fuzzing and symbolic execution, we hope to
benefit from the efficiency of fuzzing and the effectiveness of symbolic execution to build
a practically effective and efficient system for identifying real vulnerabilities in large-
scale web applications. Tomeasure the effectiveness of large applications, we can record
instruction or branch coverage during symbolic and fuzzing execution. As indicated by
the SV-Comp benchmark, we expect SWAT to be able to effectively evaluate a large por-
tion of the target’s state space. While limiting factors to the achievable coverage exist
(Section 4.6), by providing symbolic capabilities for all primitive data types and strings,
we aim to cover most branches that are affected by the behavior of the symbolic inputs.

– 64 –

6
Conclusion and Outlook

In this thesis,we introducedSWAT,a symbolicwebapplication testingplatform. SWAT is
an instrumentation-baseddynamic symbolic executionenginebasedonCATG[64] that is
designed around a loosely coupled architecture. The symbolic executor and symbolic ex-
plorer are individual modules that communicate throughHTTP requests. Our new sym-
bolic backend uses JavaSMT [6] to build constraints in the standardized SMT-Lib format
[9], allowing solver interchangeability. We used numerical theories to support all prim-
itive datatypes symbolically, including correct overflow modeling and symbolic excep-
tionmodeling for numerical exceptions. In addition to symbolic support for all primitive
datatypes, SWAT provides symbolic peers for Java’s built-in classes, such as the String
or Integer class. Building on recent advancements in the Z3 [26] solver, we can model
string operations and arrays using SMT-Lib’s respective theories, significantly increas-
ing symbolic string and array support. Using an improved instrumentation core, SWAT
can symbolically model newer language features, such as lambda expressions, while op-
timizing the instrumentation footprint. To improve the usability of SWAT, we addition-
ally introduced several adapters to initialize symbolic handling and determine symbolic
variables automatically. The symbolic executor features a thread-specific symbolic ex-
pressions store and path constraints to enable parallel execution of threads. Traces sent
between the symbolic executor and explorer are serialized using JSON and sent via an
API to allow easy future interoperability between different executors and explorers. This
thesis aimed to utilize symbolic execution to effectively and efficiently identify injection
vulnerabilities inwebapplications. BuildinguponSWAT,wehave introduced functional-
ity todetect source-to-sinkdata flow fromuser-specified sources to sinks. Usingadditional
instrumentation passes,we allow the user to specify whatmethods should be considered
sources or sinks andautomatically add the requiredhandling. Wedemonstrated that, for
the OWASP benchmark [51], we only need to specify a single regular expression to cover
all sources and can import a list from FindSecBugs [56] withoutmodification to track the
sinks. In addition, to evaluate SWAT on the OWASP benchmark, we only need to specify
the configuration file and add a parameter to the build file of the benchmark. No sym-
bolic harnesses, drivers, or peers need to be implemented.

To unlock SWAT’s full potential, we aim to increase the number of supported methods
from Javas built-in classes. The remainingmethods primarily present an engineering ef-

– 65 –

6 Conclusion and Outlook

fort planned for the future. In the meantime, SWAT reports each method it encounters
with no symbolic peer to the user to make the limitation transparent and allow targeted
implementation of the next peers. When SWAT tracksmultiple threads symbolically that
interact with each other, the symbolic state is not appropriately advanced. For our tar-
get scenario, where multiple independent requests may be executed in several threads,
general multi-threading support is vital, whereas, for example, lock detection between
threads is not a major focus. To further extend the capabilities of SWAT, we aim to ex-
tend implicit information flow tracking in loops or recursions from the concrete model
into our symbolic model. This will allow SWAT to test a target more thoroughly, increas-
ing the coverage and likelihood of finding injection vulnerabilities. In the future,we plan
to extend the capabilities to other types of vulnerabilities in a similar way to Jaint [49] yet
without explicitly building a tainting engine. Instead, we aim to facilitate the required
capabilities directly in the symbolic execution. Vulnerability classes, such asmisconfigu-
rations of cryptographic libraries,may be detectable by catching the respective initializa-
tions and evaluating whether the parameters provide a valid configuration. Evaluating
variables would allow validation of both concrete values and symbolic variables.

We have evaluated the symbolic capabilities of SWAT by comparing our system against
state-of-the-art verification tools for Java on a subset of the SV-Comp benchmark [15],
where SWAT placed fourth overall and second behind JDart [43] comparing symbolic ex-
ecution engines. In the evaluation, SWAToutperformedCOASTAL [36], the other instru-
mentation-based symbolic execution engine. A wider variety of symbolic peers along-
side implicit symbolic information flow would allow SWAT to achieve a higher score on
the SV-Comp competition and expand the evaluation to more test cases from the com-
petition. The SV-Comp evaluation underlines the potential of SWAT, especially under
consideration of the current limitations. The evaluation on the injection category of the
OWASP benchmark [51] highlights the effectiveness of SWAT, achieving an F1 score of
0.86, outperforming all tested tools. In addition, SWAT achieves perfect precision and a
slightly lower true positive rate than reported by Jaint [49]. However, the runtime on the
benchmark is reduced by a factor of 60. Overall we have shown the potential of SWAT as
a practically effective vulnerability detection system designed to operate on web service
architectures.

– 66 –

Bibliography

[1] Alhuzali, A.,Gjomemo,R.,Eshete, B., andVenkatakrishnan,V.N. NAVEX: Precise
and Scalable Exploit Generation for Dynamic Web Applications. In: 27th USENIX
Security Symposium,USENIXSecurity 2018,Baltimore,MD,USA,August 15-17, 2018.Ed.
by W. Enck and A. P. Felt. USENIX Association, 2018, pp. 377–392. url: https :
//www.usenix.org/conference/usenixsecurity18/presentation/alhuzali.

[2] Arnold, K. and Gosling, J. The Java Programming Language. Addison-Wesley, 1996.
isbn: 0-201-63455-4.

[3] Atlidakis, V., Geambasu, R., Godefroid, P., Polishchuk, M., and Ray, B. Pythia:
Grammar-Based Fuzzing of REST APIs with Coverage-guided Feedback and
Learning-based Mutations. In: CoRR abs/2005.11498, 2020. arXiv: 2005 . 11498.
url: https://arxiv.org/abs/2005.11498.

[4] Atlidakis, V., Godefroid, P., and Polishchuk, M. RESTler: stateful REST API
fuzzing. In: Proceedings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. Ed. by J. M. Atlee, T. Bultan, and
J.Whittle. IEEE, 2019, pp. 748–758. doi: 10.1109/ICSE.2019.00083. url:https:
//doi.org/10.1109/ICSE.2019.00083.

[5] Avgerinos, T., Rebert, A., Cha, S. K., and Brumley, D. Enhancing symbolic ex-
ecution with veritesting. In: Commun. ACM 59(6):93–100, 2016. doi: 10 . 1145 /
2927924. url: https://doi.org/10.1145/2927924.

[6] Baier, D., Beyer, D., and Friedberger, K. JavaSMT 3: Interacting with SMT Solvers
in Java. In: Computer Aided Verification - 33rd International Conference, CAV 2021, Vir-
tual Event, July 20-23, 2021, Proceedings, Part II. Ed. by A. Silva and K. R. M. Leino.
Vol. 12760. Lecture Notes in Computer Science. Springer, 2021, pp. 195–208. doi:
10.1007/978-3-030-81688-9_9. url: https://doi.org/10.1007/978-3-030-
81688-9%5C_9.

[7] Baldoni, R., Coppa, E., D’Elia, D. C., Demetrescu, C., and Finocchi, I. A Survey of
Symbolic Execution Techniques. In: ACMComput. Surv. 51(3):50:1–50:39, 2018. doi:
10.1145/3182657. url: https://doi.org/10.1145/3182657.

[8] Barbosa, H., Barrett, C. W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., et al. cvc5: A Versatile and
Industrial-StrengthSMTSolver. In:Tools andAlgorithms for theConstructionandAnal-
ysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences onTheory and Practice of Software, ETAPS 2022,Munich, Germany, April
2-7, 2022,Proceedings, Part I.Ed. byD. FismanandG.Rosu.Vol. 13243. LectureNotes
in Computer Science. Springer, 2022, pp. 415–442. doi: 10 .1007/978 -3 -030 -
99524-9_24. url: https://doi.org/10.1007/978-3-030-99524-9%5C_24.

– 67 –

https://www.usenix.org/conference/usenixsecurity18/presentation/alhuzali
https://www.usenix.org/conference/usenixsecurity18/presentation/alhuzali
https://arxiv.org/abs/2005.11498
https://arxiv.org/abs/2005.11498
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1145/2927924
https://doi.org/10.1145/2927924
https://doi.org/10.1145/2927924
https://doi.org/10.1007/978-3-030-81688-9%5C_9
https://doi.org/10.1007/978-3-030-81688-9%5C_9
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-3-030-99524-9%5C_24

Bibliography

[9] Barrett, C., Stump, A., and Tinelli, C. The SMT-LIB Standard: Version 2.0. In: Pro-
ceedings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh,
UK). Ed. by A. Gupta and D. Kroening. 2010.

[10] Barrett, C. W., Barbosa, H., Brain, M., Ibeling, D., King, T., Meng, P., Niemetz,
A.,Nötzli, A., Preiner,M., Reynolds, A., et al. CVC4 at the SMTCompetition 2018.
In: CoRR abs/1806.08775, 2018. arXiv: 1806.08775. url: http://arxiv.org/abs/
1806.08775.

[11] Barrett, C. W., Conway, C. L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., and Tinelli, C. CVC4. In: Computer Aided Verification - 23rd Interna-
tional Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. Ed. by
G. Gopalakrishnan and S. Qadeer. Vol. 6806. Lecture Notes in Computer Science.
Springer, 2011, pp. 171–177. doi: 10.1007/978-3-642-22110-1_14. url: https:
//doi.org/10.1007/978-3-642-22110-1%5C_14.

[12] Bellard, F. QEMU, a Fast and Portable Dynamic Translator. In: Proceedings of the
FREENIXTrack: 2005USENIXAnnual Technical Conference, April 10-15, 2005, Anaheim,
CA, USA. USENIX, 2005, pp. 41–46. url: http ://www.usenix .org/events/
usenix05/tech/freenix/bellard.html.

[13] Beyer, D. Progress on Software Verification: SV-COMP 2022. In: Tools and Algo-
rithms for theConstruction andAnalysis of Systems - 28th InternationalConference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part II. Ed. by D. Fis-
man and G. Rosu. Vol. 13244. Lecture Notes in Computer Science. Springer, 2022,
pp. 375–402. doi: 10.1007/978-3-030-99527-0_20. url: https://doi.org/10.
1007/978-3-030-99527-0%5C_20.

[14] Beyer, D. Software Verification and Verifiable Witnesses - (Report on SV-COMP
2015). In: Tools and Algorithms for the Construction and Analysis of Systems - 21st Inter-
national Conference, TACAS 2015, Held as Part of the European Joint Conferences onTheory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. Ed. by
C. Baier and C. Tinelli. Vol. 9035. Lecture Notes in Computer Science. Springer,
2015, pp. 401–416. doi: 10.1007/978-3-662-46681-0_31. url: https://doi.
org/10.1007/978-3-662-46681-0%5C_31.

[15] Beyer, D. Software Verification: 10thComparative Evaluation (SV-COMP2021). In:
Tools andAlgorithms for the Construction andAnalysis of Systems - 27th International Con-
ference, TACAS 2021, Held as Part of the European Joint Conferences onTheory and Practice
of Software, ETAPS 2021, LuxembourgCity, Luxembourg,March 27 - April 1, 2021, Proceed-
ings, Part II. Ed. by J. F. Groote and K. G. Larsen. Vol. 12652. Lecture Notes in Com-
puter Science. Springer, 2021, pp. 401–422. doi: 10.1007/978-3-030-72013-
1_24. url: https://doi.org/10.1007/978-3-030-72013-1%5C_24.

[16] Beyer, D., Löwe, S., andWendler, P. Reliable benchmarking: requirements and so-
lutions. In: Int. J. Softw.ToolsTechnol.Transf. 21(1):1–29, 2019. doi:10.1007/s10009-
017-0469-y. url: https://doi.org/10.1007/s10009-017-0469-y.

[17] Binder, W., Hulaas, J., and Moret, P. Advanced Java bytecode instrumentation.
In: Proceedings of the 5th International Symposium on Principles and Practice of Program-
ming in Java, PPPJ 2007, Lisboa, Portugal, September 5-7, 2007. Ed. by V. Amaral, L.
Marcelino, L. Veiga, and H. C. Cunningham. Vol. 272. ACM International Con-

– 68 –

https://arxiv.org/abs/1806.08775
http://arxiv.org/abs/1806.08775
http://arxiv.org/abs/1806.08775
https://doi.org/10.1007/978-3-642-22110-1%5C_14
https://doi.org/10.1007/978-3-642-22110-1%5C_14
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
https://doi.org/10.1007/978-3-030-99527-0%5C_20
https://doi.org/10.1007/978-3-030-99527-0%5C_20
https://doi.org/10.1007/978-3-662-46681-0%5C_31
https://doi.org/10.1007/978-3-662-46681-0%5C_31
https://doi.org/10.1007/978-3-030-72013-1%5C_24
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y

Bibliography

ference Proceeding Series. ACM, 2007, pp. 135–144. doi: 10 . 1145 / 1294325 .
1294344. url: https://doi.org/10.1145/1294325.1294344.

[18] Blair, W., Mambretti, A., Arshad, S., Weissbacher, M., Robertson, W., Kirda, E.,
and Egele, M. HotFuzz: Discovering Algorithmic Denial-of-Service Vulnerabil-
ities Through Guided Micro-Fuzzing. In: 27th Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2020, SanDiego, California, USA, February 23-26, 2020.
The Internet Society, 2020. url: https://www.ndss-symposium.org/ndss-
paper/hotfuzz-discovering-algorithmic-denial-of-service-vulnerabilities-
through-guided-micro-fuzzing/.

[19] Boute, R. T. The Euclidean Definition of the Functions Div and Mod. In: ACM
Trans. Program. Lang. Syst. 14(2):127–144, Apr. 1992. issn: 0164-0925. doi: 10.1145/
128861.128862. url: https://doi.org/10.1145/128861.128862.

[20] Bruneton, E., Lenglet, R., and Coupaye, T. ASM: A code manipulation tool to im-
plement adaptable systems. In: In Adaptable and extensible component systems. 2002.

[21] Cadar, C., Dunbar, D., and Engler, D. R. KLEE: Unassisted and Automatic Gen-
eration of High-Coverage Tests for Complex Systems Programs. In: 8th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2008, December 8-
10, 2008,SanDiego,California,USA,Proceedings.Ed. byR.Draves andR. vanRenesse.
USENIXAssociation,2008,pp. 209–224.url:http://www.usenix.org/events/
osdi08/tech/full%5C_papers/cadar/cadar.pdf.

[22] Chen, P. and Chen, H. Angora: Efficient Fuzzing by Principled Search. In: 2018
IEEESymposiumonSecurityandPrivacy,SP2018,Proceedings, 21-23May2018,SanFran-
cisco, California,USA. IEEEComputer Society, 2018, pp. 711–725. doi: 10.1109/SP.
2018.00046. url: https://doi.org/10.1109/SP.2018.00046.

[23] Cook, S. A. The Complexity of Theorem-Proving Procedures. In: Proceedings of the
3rdAnnual ACMSymposiumonTheory of Computing,May 3-5, 1971, ShakerHeights,Ohio,
USA. Ed. by M. A. Harrison, R. B. Banerji, and J. D. Ullman. ACM, 1971, pp. 151–
158. doi: 10.1145/800157.805047. url: https://doi.org/10.1145/800157.
805047.

[24] Cordeiro, L. C., Kesseli, P., Kroening, D., Schrammel, P., and Trtıḱ, M. JBMC: A
BoundedModel Checking Tool for Verifying Java Bytecode. In: Computer Aided Veri-
fication - 30th International Conference, CAV 2018, Held as Part of the Federated Logic Con-
ference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I. Ed. by H. Chockler
and G. Weissenbacher. Vol. 10981. Lecture Notes in Computer Science. Springer,
2018, pp. 183–190. doi: 10.1007/978-3-319-96145-3_10. url: https://doi.
org/10.1007/978-3-319-96145-3%5C_10.

[25] Dahm, M. Byte Code Engineering. In: JIT ’99, Java-Informations-Tage 1999, Düssel-
dorf 20./21. September 1999. Ed. by C. H. Cap. Informatik Aktuell. Springer, 1999,
pp. 267–277. doi: 10 . 1007 / 978 - 3 - 642 - 60247 - 4 \ _25. url: https : / / doi .
org/10.1007/978-3-642-60247-4%5C_25.

[26] DeMoura,L.andBjørner,N. Z3:AnEfficientSMTSolver. In:Proceedingsof theTheory
and Practice of Software, 14th International Conference on Tools and Algorithms for the Con-
struction andAnalysis of Systems. TACAS’08/ETAPS’08.Berlin,Heidelberg: Springer-
Verlag, 2008, pp. 337–340. isbn: 3540787992.

– 69 –

https://doi.org/10.1145/1294325.1294344
https://doi.org/10.1145/1294325.1294344
https://doi.org/10.1145/1294325.1294344
https://www.ndss-symposium.org/ndss-paper/hotfuzz-discovering-algorithmic-denial-of-service-vulnerabilities-through-guided-micro-fuzzing/
https://www.ndss-symposium.org/ndss-paper/hotfuzz-discovering-algorithmic-denial-of-service-vulnerabilities-through-guided-micro-fuzzing/
https://www.ndss-symposium.org/ndss-paper/hotfuzz-discovering-algorithmic-denial-of-service-vulnerabilities-through-guided-micro-fuzzing/
https://doi.org/10.1145/128861.128862
https://doi.org/10.1145/128861.128862
https://doi.org/10.1145/128861.128862
http://www.usenix.org/events/osdi08/tech/full%5C_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full%5C_papers/cadar/cadar.pdf
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-319-96145-3%5C_10
https://doi.org/10.1007/978-3-319-96145-3%5C_10
https://doi.org/10.1007/978-3-642-60247-4%5C_25
https://doi.org/10.1007/978-3-642-60247-4%5C_25

Bibliography

[27] Edalat, E., Sadeghiyan, B., and Ghassemi, F. ConsiDroid: A Concolic-based
Tool for Detecting SQL Injection Vulnerability in Android Apps. In: CoRR
abs/1811.10448, 2018. arXiv: 1811.10448. url: http://arxiv .org/abs/1811.
10448.

[28] Fraser, G. and Arcuri, A. EvoSuite: automatic test suite generation for object-
oriented software. In: SIGSOFT/FSE’11 19th ACMSIGSOFTSymposiumon the Founda-
tions of Software Engineering (FSE-19) and ESEC’11: 13th European Software Engineering
Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011. Ed. by T. Gyimóthy and
A. Zeller. ACM, 2011, pp. 416–419. doi: 10.1145/2025113.2025179. url: https:
//doi.org/10.1145/2025113.2025179.

[29] Fu, X. and Qian, K. SAFELI: SQL injection scanner using symbolic execution. In:
Proceedings of the 2008 Workshop on Testing, Analysis, and Verification of Web Services
andApplications, held in conjunctionwith the ACMSIGSOFT International Symposiumon
Software Testing and Analysis (ISSTA 2008), TAV-WEB 2008, Seattle, Washington, USA,
July 21, 2008. Ed. by T. Bultan and T. Xie. ACM, 2008, pp. 34–39. doi: 10.1145/
1390832.1390838. url: https://doi.org/10.1145/1390832.1390838.

[30] GitHub CodeQL. https://codeql.github.com. 2022, Accessed: 2022.
[31] Havelund, K. and Pressburger, T. Model Checking JAVA Programs using JAVA

PathFinder. In: Int. J. Softw. Tools Technol. Transf. 2(4):366–381, 2000. doi: 10.1007/
s100090050043. url: https://doi.org/10.1007/s100090050043.

[32] He, J., Sivanrupan, G., Tsankov, P., and Vechev, M. T. Learning to Explore Paths
for Symbolic Execution. In: CCS ’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021. Ed. by
Y. Kim, J. Kim, G. Vigna, and E. Shi. ACM, 2021, pp. 2526–2540. doi: 10.1145/
3460120.3484813. url: https://doi.org/10.1145/3460120.3484813.

[33] Howar, F., Jabbour, F., and Mues, M. JConstraints: A Library for Working with
Logic Expressions in Java. In:Models, Mindsets, Meta:TheWhat, the How, and theWhy
Not? - Essays Dedicated to Bernhard Steffen on the Occasion of His 60th Birthday. Ed. by
T. Margaria, S. Graf, and K. G. Larsen. Vol. 11200. Lecture Notes in Computer Sci-
ence. Springer, 2018, pp. 310–325. doi: 10.1007/978-3-030-22348-9_19. url:
https://doi.org/10.1007/978-3-030-22348-9%5C_19.

[34] InsiderSec Insider. https://github.com/insidersec/insider. 2021, Accessed:
2022.

[35] Islam,M.andCsallner, C. Dsc+Mock: a test case +mock class generator in support
of coding against interfaces. In: Proceedings of the InternationalWorkshop onDynamic
Analysis: held in conjunction with the ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA 2010), WODA 2010, Trento, Italy, July 12, 2010. Ed. by
J. Cook and J. A. Jones. ACM, 2010, pp. 26–31. doi: 10.1145/1868321.1868326.
url: https://doi.org/10.1145/1868321.1868326.

[36] Jaco Geldenhuys and Willem Visser COASTAL: A Java program analysis tool built on
concolic execution and fuzz testing. https://deepseaplatform.github.io/coastal/.
2019, Accessed: 2022.

[37] Kahsai, T.,Rümmer, P., Sanchez,H., andSchäf,M. JayHorn: A Framework forVer-
ifying Java programs. In: Computer Aided Verification - 28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I. Ed. by S. Chaud-

– 70 –

https://arxiv.org/abs/1811.10448
http://arxiv.org/abs/1811.10448
http://arxiv.org/abs/1811.10448
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/1390832.1390838
https://doi.org/10.1145/1390832.1390838
https://doi.org/10.1145/1390832.1390838
https://codeql.github.com
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/s100090050043
https://doi.org/10.1145/3460120.3484813
https://doi.org/10.1145/3460120.3484813
https://doi.org/10.1145/3460120.3484813
https://doi.org/10.1007/978-3-030-22348-9%5C_19
https://github.com/insidersec/insider
https://doi.org/10.1145/1868321.1868326
https://doi.org/10.1145/1868321.1868326
https://deepseaplatform.github.io/coastal/

Bibliography

huri and A. Farzan. Vol. 9779. Lecture Notes in Computer Science. Springer, 2016,
pp. 352–358. doi: 10.1007/978-3-319-41528-4_19. url: https://doi.org/10.
1007/978-3-319-41528-4%5C_19.

[38] Kersten, R., Luckow, K. S., and Pasareanu, C. S. POSTER: AFL-based Fuzzing for
Java with Kelinci. In: Proceedings of the 2017 ACMSIGSACConference on Computer and
CommunicationsSecurity,CCS2017,Dallas,TX,USA,October 30 -November03, 2017.Ed.
byB.M.Thuraisingham,D.Evans,T.Malkin, andD.Xu.ACM,2017, pp. 2511–2513.
doi: 10.1145/3133956.3138820. url: https://doi.org/10.1145/3133956.
3138820.

[39] Lattner, C. and Adve, V. S. LLVM: A Compilation Framework for Lifelong Program
Analysis&Transformation. In: 2nd IEEE/ACMInternationalSymposiumonCodeGen-
eration andOptimization (CGO2004), 20-24March2004, San Jose,CA,USA. IEEECom-
puter Society, 2004, pp. 75–88. doi: 10.1109/CGO.2004.1281665. url: https:
//doi.org/10.1109/CGO.2004.1281665.

[40] Lindholm, T., Yellin, F., Bracha, G., and Buckley, A. The Java virtual machine specifi-
cation. Pearson Education, 2014.

[41] Livshits, V. B. and Lam, M. S. Finding Security Vulnerabilities in Java Applica-
tionswith Static Analysis. In: Proceedings of the 14thUSENIXSecurity Symposium,Bal-
timore,MD,USA, July 31 -August 5, 2005. Ed. by P.D.McDaniel.USENIXAssociation,
2005. url: https ://www.usenix .org/conference/14th-usenix-security-
symposium/finding-security-vulnerabilities-java-applications-static.

[42] LLVM Undefined behavior sanitizer. https : / / clang . llvm . org / docs /
UndefinedBehaviorSanitizer.html. 2021, Accessed: 2022.

[43] Luckow, K. S., Dimjasevic, M., Giannakopoulou, D., Howar, F., Isberner, M., Kah-
sai, T., Rakamaric, Z., and Raman, V. JDart: A Dynamic Symbolic Analysis Frame-
work. In: Tools and Algorithms for the Construction and Analysis of Systems - 22nd Inter-
national Conference, TACAS 2016, Held as Part of the European Joint Conferences onTheory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Pro-
ceedings. Ed. by M. Chechik and J. Raskin. Vol. 9636. Lecture Notes in Computer
Science. Springer, 2016, pp. 442–459. doi: 10.1007/978-3-662-49674-9_26.
url: https://doi.org/10.1007/978-3-662-49674-9%5C_26.

[44] Luk, C., Cohn, R. S., Muth, R., Patil, H., Klauser, A., Lowney, P. G., Wallace, S.,
Reddi, V. J., and Hazelwood, K. M. Pin: building customized program analysis
tools with dynamic instrumentation. In: Proceedings of the ACMSIGPLAN 2005 Con-
ference on Programming LanguageDesign and Implementation, Chicago, IL, USA, June 12-
15, 2005. Ed. by V. Sarkar andM.W. Hall. ACM, 2005, pp. 190–200. doi: 10.1145/
1065010.1065034. url: https://doi.org/10.1145/1065010.1065034.

[45] Man,H., An, J.,Huang,W., and Fan,W. JSEFuzz: Vulnerability DetectionMethod
for Java Web Application. In: 3rd International Conference on System Reliability and
Safety, ICSRS 2018, Barcelona, Spain, November 23-25, 2018. IEEE, 2018, pp. 92–96.
doi: 10.1109/ICSRS.2018.8688844. url: https://doi.org/10.1109/ICSRS.
2018.8688844.

[46] Michal Zalewski American fuzzy lop. https://lcamtuf.coredump.cx/afl/. 2022,
Accessed: 2022.

– 71 –

https://doi.org/10.1007/978-3-319-41528-4%5C_19
https://doi.org/10.1007/978-3-319-41528-4%5C_19
https://doi.org/10.1145/3133956.3138820
https://doi.org/10.1145/3133956.3138820
https://doi.org/10.1145/3133956.3138820
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://www.usenix.org/conference/14th-usenix-security-symposium/finding-security-vulnerabilities-java-applications-static
https://www.usenix.org/conference/14th-usenix-security-symposium/finding-security-vulnerabilities-java-applications-static
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://doi.org/10.1007/978-3-662-49674-9%5C_26
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1109/ICSRS.2018.8688844
https://doi.org/10.1109/ICSRS.2018.8688844
https://doi.org/10.1109/ICSRS.2018.8688844
https://lcamtuf.coredump.cx/afl/

Bibliography

[47] MITRE CommonWeakness Enumerations. https://cwe.mitre.org/index.html.
2022, Accessed: 2022.

[48] Mues, M. and Howar, F. GDart: An Ensemble of Tools for Dynamic Symbolic
Execution on the Java Virtual Machine (Competition Contribution). In: Tools and
Algorithms for the Construction and Analysis of Systems - 28th International Conference,
TACAS 2022, Held as Part of the European Joint Conferences onTheory and Practice of Soft-
ware, ETAPS 2022,Munich, Germany, April 2-7, 2022, Proceedings, Part II. Ed. by D. Fis-
man and G. Rosu. Vol. 13244. Lecture Notes in Computer Science. Springer, 2022,
pp. 435–439. doi: 10.1007/978-3-030-99527-0_27. url: https://doi.org/10.
1007/978-3-030-99527-0%5C_27.

[49] Mues, M., Schallau, T., and Howar, F. Jaint: A Framework for User-Defined Dy-
namic Taint-Analyses based on Dynamic Symbolic Execution of Java Programs.
In: Software Engineering 2021, Fachtagung des GI-Fachbereichs Softwaretechnik, 22.-26.
Februar 2021, Braunschweig/Virtuell. Ed. by A. Koziolek, I. Schaefer, and C. Seidl.
Vol. P-310. LNI. Gesellschaft für Informatik e.V., 2021, pp. 77–78. doi: 10.18420/
SE2021_27. url: https://doi.org/10.18420/SE2021%5C_27.

[50] Oracle Espresso: A meta-circular Java bytecode interpreter for the GraalVM. https : / /
github.com/oracle/graal/tree/master/espresso. 2022, Accessed: 2022.

[51] OWASP OWASP Benchmark. https://owasp.org/www-project-benchmark/
#div-scoring. 2022, Accessed: 2022.

[52] OWASP OWASPWebGoat. https://owasp.org/www-project-webgoat/. 2022,
Accessed: 2022.

[53] OWASP Top 10Web Application Security Risks. https://owasp.org/www-project-
top-ten/. 2021, Accessed: 2022.

[54] Pasareanu, C. S. and Rungta, N. Symbolic PathFinder: symbolic execution of Java
bytecode. In:ASE2010, 25th IEEE/ACMInternationalConference onAutomatedSoftware
Engineering, Antwerp, Belgium, September 20-24, 2010. Ed. by C. Pecheur, J. Andrews,
and E. D. Nitto. ACM, 2010, pp. 179–180. doi: 10.1145/1858996.1859035. url:
https://doi.org/10.1145/1858996.1859035.

[55] Pasareanu, C. S. and Rungta, N. Symbolic PathFinder: symbolic execution of Java
bytecode. In:ASE2010, 25th IEEE/ACMInternationalConference onAutomatedSoftware
Engineering, Antwerp, Belgium, September 20-24, 2010. Ed. by C. Pecheur, J. Andrews,
and E. D. Nitto. ACM, 2010, pp. 179–180. doi: 10.1145/1858996.1859035. url:
https://doi.org/10.1145/1858996.1859035.

[56] Philippe Arteau FindSecBugs: Find Security Bugs. https://find-sec-bugs.github.
io. 2022, Accessed: 2022.

[57] Poeplau, S. and Francillon, A. SymQEMU: Compilation-based symbolic execution
forbinaries. In:28thAnnualNetworkandDistributedSystemSecuritySymposium,NDSS
2021, virtually, February 21-25, 2021.The Internet Society, 2021. url: https://www.
ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-
execution-for-binaries/.

[58] r2c CodeQL. https://semgrep.dev. 2022, Accessed: 2022.
[59] Rial, I. M. L. and Galeotti, J. P. EvoSuiteDSE at the SBST 2021 Tool Competition.

In: 14th IEEE/ACMInternationalWorkshop onSearch-BasedSoftwareTesting, SBST2021,

– 72 –

https://cwe.mitre.org/index.html
https://doi.org/10.1007/978-3-030-99527-0%5C_27
https://doi.org/10.1007/978-3-030-99527-0%5C_27
https://doi.org/10.18420/SE2021%5C_27
https://github.com/oracle/graal/tree/master/espresso
https://github.com/oracle/graal/tree/master/espresso
https://owasp.org/www-project-benchmark/#div-scoring
https://owasp.org/www-project-benchmark/#div-scoring
https://owasp.org/www-project-webgoat/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1145/1858996.1859035
https://find-sec-bugs.github.io
https://find-sec-bugs.github.io
https://www.ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-binaries/
https://www.ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-binaries/
https://www.ndss-symposium.org/ndss-paper/symqemu-compilation-based-symbolic-execution-for-binaries/
https://semgrep.dev

Bibliography

Madrid, Spain, May 31, 2021. IEEE, 2021, pp. 30–31. doi: 10.1109/SBST52555.
2021.00013. url: https://doi.org/10.1109/SBST52555.2021.00013.

[60] Ruaro, N., Zeng, K., Dresel, L., Polino, M., Bao, T., Continella, A., Zanero, S.,
Kruegel, C., and Vigna, G. SyML: Guiding Symbolic Execution Toward Vulnera-
ble States Through Pattern Learning. In: RAID ’21: 24th International Symposium on
Research in Attacks, Intrusions and Defenses, San Sebastian, Spain, October 6-8, 2021. Ed.
by L. Bilge and T. Dumitras. ACM, 2021, pp. 456–468. doi: 10 .1145/3471621 .
3471865. url: https://doi.org/10.1145/3471621.3471865.

[61] Sharma, V., Hussein, S., Whalen, M. W., McCamant, S., and Visser, W. Java
Ranger: statically summarizing regions for efficient symbolic execution of Java.
In: ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, Virtual Event, USA, November 8-13,
2020. Ed. by P. Devanbu,M. B. Cohen, and T. Zimmermann. ACM, 2020, pp. 123–
134. doi: 10.1145/3368089.3409734. url: https://doi.org/10.1145/3368089.
3409734.

[62] ShiftLeftSecurity ShiftLeft Scan. https://github.com/ShiftLeftSecurity/sast-
scan. 2022, Accessed: 2022.

[63] Statista Most used programming languages. https : / / www . statista . com /
statistics/793628/worldwide-developer-survey-most-used- languages/.
2021, Accessed: 2022.

[64] Tanno, H., Zhang, X., Hoshino, T., and Sen, K. TesMa and CATG: Automated Test
Generation Tools for Models of Enterprise Applications. In: 37th IEEE/ACM Inter-
national Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015,
Volume 2. Ed. by A. Bertolino, G. Canfora, and S. G. Elbaum. IEEE Computer Soci-
ety, 2015, pp. 717–720. doi: 10.1109/ICSE.2015.231. url: https://doi.org/10.
1109/ICSE.2015.231.

[65] The Linux Foundation OpenAPI Initiative. https://www.openapis.org/. 2022,
Accessed: 2022.

[66] Thomas Eisenbarth CS4701 CoSyS: Advanced Code Analysis: Symbolic Execution. 2021.
[67] Vallee-Rai, R. and Hendren, L. J. Jimple: Simplifying Java Bytecode for Analyses and

Transformations. 1998.
[68] VMware Tanzu Spring. https://spring.io. 2022, Accessed: 2022.
[69] Wang, F. and Shoshitaishvili, Y. Angr - The Next Generation of Binary Analysis.

In: IEEE Cybersecurity Development, SecDev 2017, Cambridge, MA, USA, September 24-
26, 2017. IEEE Computer Society, 2017, pp. 8–9. doi: 10.1109/SecDev.2017.14.
url: https://doi.org/10.1109/SecDev.2017.14.

[70] Watkins, C. J. C. H. and Dayan, P. Technical Note Q-Learning. In: Mach. Learn.
8:279–292, 1992. doi: 10.1007/BF00992698. url: https://doi.org/10.1007/
BF00992698.

[71] Wu, J., Zhang, C., and Pu, G. Reinforcement Learning Guided Symbolic Execu-
tion. In: 27th IEEE International Conference on Software Analysis, Evolution and Reengi-
neering, SANER2020, London,ON,Canada, February 18-21, 2020.Ed. byK.Kontogian-
nis, F. Khomh, A. Chatzigeorgiou,M. Fokaefs, andM. Zhou. IEEE, 2020, pp. 662–
663. doi: 10.1109/SANER48275.2020.9054815. url: https://doi.org/10.
1109/SANER48275.2020.9054815.

– 73 –

https://doi.org/10.1109/SBST52555.2021.00013
https://doi.org/10.1109/SBST52555.2021.00013
https://doi.org/10.1109/SBST52555.2021.00013
https://doi.org/10.1145/3471621.3471865
https://doi.org/10.1145/3471621.3471865
https://doi.org/10.1145/3471621.3471865
https://doi.org/10.1145/3368089.3409734
https://doi.org/10.1145/3368089.3409734
https://doi.org/10.1145/3368089.3409734
https://github.com/ShiftLeftSecurity/sast-scan
https://github.com/ShiftLeftSecurity/sast-scan
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://doi.org/10.1109/ICSE.2015.231
https://doi.org/10.1109/ICSE.2015.231
https://doi.org/10.1109/ICSE.2015.231
https://www.openapis.org/
https://spring.io
https://doi.org/10.1109/SecDev.2017.14
https://doi.org/10.1109/SecDev.2017.14
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1109/SANER48275.2020.9054815
https://doi.org/10.1109/SANER48275.2020.9054815
https://doi.org/10.1109/SANER48275.2020.9054815

Bibliography

[72] Würthinger, T., Wimmer, C., Wöß, A., Stadler, L., Duboscq, G., Humer, C.,
Richards, G., Simon, D., andWolczko, M. One VM to rule them all. In: ACMSym-
posium on New Ideas in Programming and Reflections on Software, Onward! 2013, part of
SPLASH ’13, Indianapolis, IN,USA,October 26-31, 2013.Ed. byA. L.Hosking,P. T. Eug-
ster,andR.Hirschfeld.ACM,2013,pp. 187–204.doi:10.1145/2509578.2509581.
url: https://doi.org/10.1145/2509578.2509581.

[73] Yun, I., Lee, S., Xu, M., Jang, Y., and Kim, T. QSYM : A Practical Concolic Exe-
cution Engine Tailored for Hybrid Fuzzing. In: 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018. Ed. by W. Enck and
A. P. Felt. USENIX Association, 2018, pp. 745–761. url: https://www.usenix.
org/conference/usenixsecurity18/presentation/yun.

– 74 –

https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun

A
Appendix

Detailed Byte code contributions

Table A.1: Overviewof symbolic capabilities forSWATandCATG [64] per opcode.

CATG SWAT
Symbolic Symbolic Tested Trace Sym. Exception

aaload � × × Branch �
aastore × × × Branch �

aconst_null - - - - -
aload - - - - -

aload_0 - - - - -
aload_1 - - - - -
aload_2 - - - - -
aload_3 - - - - -

anewarray × × × Branch �
areturn - - - Special ×

arraylength × � × Special ×
astore - - - - -

astore_0 - - - - -
astore_1 - - - - -
astore_2 - - - - -
astore_3 - - - - -
athrow - - - Special ×
baload � � × Branch �

Continued on next page

– 75 –

A Appendix

Table A.1: Overviewof symbolic capabilities forSWATandCATG [64] per opcode.
(Continued)

CATG SWAT
Symbolic Symbolic Tested Trace Sym. Exception

bastore × � × Branch �
bipush - - - - -

breakpoint - - - - -
caload � � × Branch �
castore × � × Branch �

checkcast - - - Special ×
d2f × � � - -
d2i × � � - -
d2l × � � - -

dadd × � � - -
daload � � × Branch �
dastore × � × Branch �
dcmpg × � � - -
dcmpl × � � - -

dconst_0 - - - - -
dconst_1 - - - - -

ddiv × � � - -
dload - - - - -

dload_0 - - - - -
dload_1 - - - - -
dload_2 - - - - -
dload_3 - - - - -

dmul × � � - -
dneg × � � - -
drem × × � - -

dreturn - - - Special ×
dstore - - - - -

dstore_0 - - - - -
dstore_1 - - - - -
dstore_2 - - - - -

Continued on next page

– 76 –

A Appendix

Table A.1: Overviewof symbolic capabilities forSWATandCATG [64] per opcode.
(Continued)

CATG SWAT
Symbolic Symbolic Tested Trace Sym. Exception

dstore_3 - - - - -
dsub × � � - -
dup - - - - -

dup_x1 - - - - -
dup_x2 - - - - -

dup2 - - - - -
dup2_x1 - - - -
dup2_x2 - - - - -

f2d × � � - -
f2i × � � - -
f2l × � � - -

fadd × � � - -
faload � � × Branch �
fastore × � × Branch �
fcmpg × � � - -
fcmpl × � � - -

fconst_0 - - - - -
fconst_1 - - - - -
fconst_2 - - - - -

fdiv × � � - -
fload - - - - -

fload_0 - - - - -
fload_1 - - - - -
fload_2 - - - - -
fload_3 - - - - -

fmul × � � - -
fneg × � � - -
frem × × � - -

freturn - - - Special ×
fstore - - - - -

Continued on next page

– 77 –

A Appendix

Table A.1: Overviewof symbolic capabilities forSWATandCATG [64] per opcode.
(Continued)

CATG SWAT
Symbolic Symbolic Tested Trace Sym. Exception

fstore_0 - - - - -
fstore_1 - - - - -
fstore_2 - - - - -
fstore_3 - - - - -

fsub × � � - -
getfield - - - - -

getstatic - - - Special ×
goto - - - - -

goto_w - - - - -
i2b � � � - -
i2c � � � - -
i2d × � � - -
i2f × � � - -
i2l � � � - -
i2s � � � - -

iadd � � � - -
iaload � � × Branch �
iand × � � - -

iastore × � × Branch �
iconst_0 - - - - -
iconst_1 - - - - -
iconst_2 - - - - -
iconst_3 - - - - -
iconst_4 - - - - -
iconst_5 - - - - -

iconst_m1 - - - - -
idiv × � � Branch �

if_acmpeq × × × Branch -
if_acmpne × × × Branch -
if_icmpeq � � � Branch -

Continued on next page

– 78 –

A Appendix

Table A.1: Overviewof symbolic capabilities forSWATandCATG [64] per opcode.
(Continued)

CATG SWAT
Symbolic Symbolic Tested Trace Sym. Exception

if_icmpge � � � Branch -
if_icmpgt � � � Branch -
if_icmple � � � Branch -
if_icmplt � � � Branch -
if_icmpne � � � Branch -

ifeq � � � Branch -
ifge � � � Branch -
ifgt � � � Branch -
ifle � � � Branch -
iflt � � � Branch -
ifne � � � Branch -

ifnonnull � � × Branch -
ifnull � � × Branch -
iinc � � � - -

iload - - - - -
iload_0 - - - - -
iload_1 - - - - -
iload_2 - - - - -
iload_3 - - - - -
impdep1 - - - - -
impdep2 - - - - -

imul � � � - -
ineg � � � - -

instanceof - - - Special ×
invokedynamic - - - Special ×
invokeinterface - - - Special ×
invokespecial - - - Special ×
invokestatic - - - Special ×

invokevirtual - - - Special ×
ior × � � - -

Continued on next page

– 79 –

A Appendix

Table A.1: Overviewof symbolic capabilities forSWATandCATG [64] per opcode.
(Continued)

CATG SWAT
Symbolic Symbolic Tested Trace Sym. Exception

irem × � � Branch �
ireturn - - Special ×

ishl × � � - -
ishr × � � - -

istore - - - - -
istore_0 - - - - -
istore_1 - - - - -
istore_2 - - - - -
istore_3 - - - - -

isub � � � - -
iushr × � � - -
ixor × � � - -

jsr_w† - - - - -
jsr† - - - - -
l2d × � � - -
l2f × � � - -
l2i � � � - -

ladd � � � - -
laload � � × Branch �
land × � � - -

lastore × � × Branch �
lcmp � � � - -

lconst_0 - - - - -
lconst_1 - - - - -

ldc - - - Special ×
ldc_w - - - Special ×
ldc2_w - - - - -

ldiv × � � Branch �
lload - - - - -

lload_0 - - - - -

Continued on next page

– 80 –

A Appendix

Table A.1: Overviewof symbolic capabilities forSWATandCATG [64] per opcode.
(Continued)

CATG SWAT
Symbolic Symbolic Tested Trace Sym. Exception

lload_1 - - - - -
lload_2 - - - - -
lload_3 - - - - -

lmul � � � - -
lneg � � � - -

lookupswitch - - - Branch -
lor × � � - -

lrem × � � Branch �
lreturn - - - - -

lshl × � � - -
lshr × � � - -

lstore - - - - -
lstore_0 - - - - -
lstore_1 - - - - -
lstore_2 - - - - -
lstore_3 - - - - -

lsub � � � - -
lushr × � � - -
lxor × � � - -

monitorenter - - - Special ×
monitorexit - - - Special ×

multianewarray - - - Branch �
new - - - Special ×

newarray - - - Branch �
nop - - - - -
pop - - - - -
pop2 - - - - -

putfield - - - Special ×
putstatic - - - Special ×

ret† - - - - -

Continued on next page

– 81 –

A Appendix

Table A.1: Overviewof symbolic capabilities forSWATandCATG [64] per opcode.
(Continued)

CATG SWAT
Symbolic Symbolic Tested Trace Sym. Exception

return - - - Special ×
saload � � × Branch �
sastore × � × Branch �
sipush - - - - -
swap - - - - -

tableswitch - - - Branch -
wide - - - - -

– 82 –

	1 Introduction
	2 Background
	2.1 Symbolic Execution
	2.2 Java Virtual Machine
	2.3 Java Vulnerabilities

	3 Related Work
	3.1 Symbolic Execution Engines
	3.2 Web Service Fuzzing

	4 Symbolic Web Application Testing
	4.1 Architecture
	4.2 Instrumentation
	4.3 Symbolic Executor
	4.4 Symbolic Initalization
	4.5 Symbolic Explorer
	4.6 Evaluation

	5 Vulnerability Detection
	5.1 Identifying Vulnerabilities
	5.2 Evaluation
	5.3 Transferability to Real World Applications

	6 Conclusion and Outlook
	Bibliography
	A Appendix

